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1. INTRODUCTION 
 

Recent advances in chemistry and meteorology 
models and computational efficiency have allowed 
the operational use of coupled chemistry-transport 
models (CTMs) by local air quality forecasters.  The 
adoption of numerical model guidance by 
operational forecasters, the number of whom has 
been increasing rapidly in the past several years, 
depends on the reliability of numerical model 
guidance in critical high ozone (O3) cases.  In turn, 
routine use of these models by forecasters can 
result in a positive feedback of information to model 
developers to further improve model performance. 

 
During summer 2001 and 2002, the National 

Oceanic and Atmospheric Administration (NOAA) 
conducted a pilot program designed to test existing 
numerical air quality prediction (NAQP) systems and 
their components. This pilot program was initiated in 
preparation for testing and deployment of an 
operational NAQP system at the National Centers 
for Environmental Prediction (NCEP) in Suitland, 
MD. NCEP is the NOAA office that conducts day-to-
day operational numerical forecasting for the 
National Weather Service (NWS). The goal of the 
pilot was to provide information crucial to the 
development of an NWS forecast system capable of 
meeting the demands of operational forecasters. 

 
Though not among those tested, the model 

chosen by NOAA/NCEP for implementation, CMAQ 
(Byun et al., 1999), is closely related to one of the 
models used in the pilot programs, the MAQSIP-RT 
(McHenry, et al. , 2003) model. In the pilot programs 
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MAQSIP-RT utilized other components of the EPA 
Models-3 system currently administered by the 
Community Modeling and Analysis Sys tems 
(CMAS) Center  at UNC Chapel Hill, including MM5 
(Grell et al., 1994)  and  SMOKE  (Coats, 1996;  
Houyoux, 2000). However, MM5 is not planned for 
use in the NCEP system; rather, the NCEP Eta-
model (Janjic, 1994) will be used as a 
meteorological driver. Further, SMOKE component 
models have been integrated or parameterized into 
the NCEP system to allow optimal use of scarce 
computational resources at NCEP.   

 
This abstract reports on the results of the pilot 

programs for MAQSIP-RT as compared to the other 
pilot models/components tested. Because of its 
good performance, the MAQSIP-RT system 
establishes performance benchmarks that can be 
used to quantify expectations for the Eta-CMAQ 
system currently in early testing at NCEP 
(Davidson, et al., 2003).  

 
2. FORECAST MODELS TESTED 
 

The first phase of the pilot was begun in 2001, 
with a second phase taking place in 2002. In the 
first phase, MAQSIP-RT model forecasts were 
produced over New England and the Northern Mid-
Atlantic, running in real-time at 45km, 15km and 
5km. These forecasts were run in order to 
demonstrate capability and assess baseline 
performance. Other models available within NOAA 
were exercised offline during Phase 1. During 
Phase 2, these models were also run in real-time 
and include the NOAA HYSPLIT-CheM model 
(Stein et al., 2000) and the MM5-Chem model (Grell 
et al., 2000). 

 
3. MODEL INTERCOMPARISON RESULTS: 

PHASE 1 
 

The Phase 1 MAQSIP-RT forecast results were 
evaluated using standard EPA episodic regulatory 



model metrics and compared against several 
operational forecast methods already available at 
that same time. These included a statistical model in 
routine use in Philadelphia (Ryan et al., 2000 ), the 
Canadian CHRONOS model (Pudykiewicz, et al., 
1997), a persistence forecast of peak 8-hour-
average ozone in New England, and the official 
forecasts issued by state forecasters in the New 
England states (McHenry et al., 2003). 

 
To conduct the comparison, a typical high-

ozone episode was chosen which characterizes 
challenging forecast situations in New England and 
the northern mid-Atlantic. The episode occurred 
August 1-10, 2001 and was initiated with the 
establishment of a surface high and associated 
upper-level ridge centered over central MD. Early on 
August 2, an area of low pressure developed 
southeast of Cape Hatteras (HAT). Onshore flow 
was enhanced as the center of high pressure 
moved offshore, providing a cooler, cleaner 
maritime air mass to the southern Mid-Atlantic while 
in New England, winds re-circulated as high 
pressure passed to the south. Between Aug. 3-5, a 
frontal boundary aligned zonally and became quasi-
stationary along a line from Portland, ME, to 
Pittsburgh, PA. Between Aug. 6-10, this boundary 
washed out as high-pressure built back across the 
whole region.  A brief respite occurred in northern 
New England on Aug. 8, with the arrival and quick 
departure of a back-door cold front. On Aug. 9, the 
upper level ridge oscillated back eastward.  
Boundary layer winds backed to the west-
southwest, the band of highest O3 became oriented 
directly along the I-95 Corridor, and peak 
concentrations rose.  A vigorous cold front 
approached the region on August 10, bringing the 
episode to a close. 

 
MAQSIP-RT is able, in forecast mode, to meet 

several key performance criteria for regulatory 
models that are exercised with analyzed, rather than 
forecast, meteorological fields (Table 1).  Gross 
error, in percent, in the 15-27% range throughout 
the episode, meets the EPA performance criteria of 
35%.  Model bias shows a good deal of day-to-day 
variation but overall is –9.7%  when normalized, 
which is within the EPA performance criteria of ± 5-
15%.  Mean absolute error is in the 11-21 ppbv 
range, and rmse, which gives a rough estimate of 
forecast consistency, is in the 16-26 ppbv range. 

 
Evaluation in PHL showed that for the episode, 

the mean absolute error (MAE) for MAQSIP-RT was 
12.1 ppbv and compared well to the statistical 
model (11.5-12.9 ppbv).  The PHL-expert-modified 
public forecast was the best forecast with an MAE of 
8.0 ppbv.  MAQSIP-RT out-performed the raw 
statistical forecasts by consideration of the median 
absolute error (7.3 ppbv compared to 9.6-12.0 
ppbv). As the difference in mean and median error 
suggests, day-to-day skill of both statistical and 

numerical models varied.  The regression model 
was not able to resolve the northward extent of the 
advection of maritime air on August 2 and over-
predicted in the range of 27-34 ppbv.  On August 4, 
the regression model carried a better forecast of 
cloud cover and a subsequent reduction in 
temperature and so provided better forecasts than 
MAQSIP-RT although still retained an over-
prediction of 10-20 ppbv.  Regression model skill 
was better than MAQSIP-RT on August 7-8 as 
MAQSIP-RT under-predicted across the PHL 
region, but the regression model was less skillful on 
August 9-10 with a tendency to under-predict.  
Overall, the skill of MAQSIP-RT was as good or 
better than the raw statistical guidance. The 
consistent performance of MAQSIP-RT by this 
measure was unexpected as domain-wide peak 1-
hour-average O3 is a difficult measure by which to 
evaluate numerical forecast models. 

 
TABLE 1.  MAQSIP-RT day-to-day model performance 

measures for August 1-10, for 1-hour-average 
concentrations across the 15km NE domain. All measures 

are based on a 60 ppbv threshold. 
 
Date 

 
Bias 
(ppbv) 

 
Mean 
absolute 
error  
(ppbv) 
 

 
Gross 
error 
(%) 

 
    rms 
error      
(ppbv) 

August 1 -12.6 15.7 20.5 20.8 
August 2 -9.0 12.3 15.9 16.2 
August 3 0.5 11.0 15.5 14.0 
August 4 12.5 17.9 26.8 20.8 
August 6 -3.5 16.0 21.9 20.6 
August 7 -14.4 17.4 20.2 23.1 
August 8 -18.0 21.2 27.3 25.9 
August 9 -7.7 20.6 19.5 20.6 
August 10 2.6 15.9 17.2 15.9 

 
When evaluated against monitor-specific 

forecasts in the NE U.S., MAQSIP-RT improved on 
expert forecasts, persistence, and the CHRONOS 
numerical model by a variety of traditional discrete 
(bias, MAE, rmse, IA) measures, taken over the 
whole set of monitors. MAE results are shown in 
Figure 1. 

 

 
Figure 1. Episode and daily MAE statistics for peak 8-hour-
average O3 at all forecasted monitors  MAQSIP-RT (MAQ) 
is given in green, NE forecasts (NEF) in blue, CHRONOS 

(CHR) in red and Persistence (PER) in brown. 



Table 2. Forecast performance measures for selected sub-
regions (all measures in ppbv). 

Sub-region MAQS
IP 

CHRO
NOS 

NE 
Foreca
sts 

Persisten
ce 

Coastal                   Monitors = 20          N= 177       Mean 
Peak O3 = 72.8 
Bias +1.9 +9.3 +5.8 -1.6 
MAE 13.8 18.7 16.4 24.4 
RMSE 17.2 23.4 20.3 29.1 
Index of Agreement 0.77 0.66 0.71 0.45 
Western-Rural       Monitors = 32          N=277        Mean Peak 
O3 = 57.9 
Bias +4.4 +13.2 +11.6 -0.7 
MAE 11.3 16.1 14.3 14.8 
RMSE 14.9 20.0 17.2 17.8 
Index of Agreement 0.74 0.70 0.68 0.58 
I-95 Corridor Interior     Monitors = 20         N=118        Mean 
Peak O3 = 77.9  
Bias +0.7 +17.7 +6.7 -12.6 
MAE 15.0 20.0 13.2 21.6 
RMSE 18.4 24.8 16.3 24.8 
Index of Agreement 0.68 0.61 0.77 0.44 

 
Table 3.  Contingency table for threshold forecasts. 

  Observed 
  Yes  No 

Yes  a b Forecast 
No c d 

 
Table 4.  Threshold skill measures. 

lMeasure Symbol Formula 
Accuracy A 
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da

+++
+

 

Bias B 

ca
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+
+

 

False 
Alarm 
Ratio 

F 
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b
+

 

Probability 
of 

Detection 
(POD) 

H 

ca
a
+

 

Heidke 
Skill 

Score 
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Critical 
Success 

Index 

CSI 
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a
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Pierce 
Skill 

Score 

PSS 

( ) )( db
b
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a

+
−

+
 

 
In addition (Table 2), MAQSIP-RT performed 

best in two key sub-regions, the western-rural 
monitors that “define” the regional background O3 
concentrations, and the coastal monitors that are 
often subject to abrupt air mass changes. The 
expert forecasts were slightly better in the interior of 
the I-95 corridor, reflecting model difficulties in 
resolving the effects of steep near-urban precursor 
gradients as well as forecaster experience in this 
environment. 

 
Because air quality forecasts are issued to the 

public in the form of color codes, forecast skill at 
high O3 thresholds are an important measure of 
performance.  For a variety of threshold 
(categorical) forecast skill measures (Tables 3, 4), 
MAQSIP-RT outperformed the CHRONOS model 
and provided results similar to the expert New 
England forecasters for an 8-hour-average of 
85ppbv as the threshold (Table 5). This threshold 
represents the cutoff between relatively good and 
relatively poor air quality and is used to trigger 
Ozone Action Day advisories in New England. 

 
Table 5.  Skill results for forecast methods.  “Blend” refers to a 
50-50 weighted average of both numerical forecasts. 

 MAQSIP CHR NEF PER Blend 
H 0.49 0.28 0.45 0.19 0.49 
F 0.13 0.26 0.22 0.14 0.19 
B 1.06 1.47 1.61 0.98 1.48 
A 0.80 0.68 0.77 0.76 0.80 

CSI 0.34 0.20 0.39 0.10 0.41 
PSS 0.37 0.12 0.38 0.05 0.41 
HSS 0.38 0.13 0.42 0.05 0.46 

 
 

4. MODEL INTERCOMPARISON RESULTS: 
PHASE 2 
 
Phase 2 was planned to coincide with the first 

of two northeast US field programs, the New 
England (http://airmap.unh.edu/about/NEAQS.cfm) 
AQ Study, NEAQS-2002. This project utilized the 
NOAA research vessel Ronald H. Brown and 
involved more than 20 partner institutions. In 
addition to the heavily instrumented ship, a G-1 
Gulfstream research aircraft operated by the U.S. 
Department of Energy's (DOE) Pacific Northwest 
National Laboratory (PNNL) also collected data with 
instruments developed at both PNNL and DOE's 
Brookhaven National Laboratory.  

 
Phase 2 data was evaluated against monitor 

observations in the NE US for the period Aug 5-29, 
2002.  As in the phase 1 evaluation, both discrete 
and categorical analyses were performed on the 
operational model results. Further, skill scores were 
determined using the persistence forecast as a 
baseline measure of skill. Statistically, the 
persistence forecast and model forecast can be 
expressed as:  

 
   P = µ + EP                        (1) 
  M = µ + EM                        (2) 

 
where P is the forecasted value by persistence 
forecast, M is the value forecasted by a model, µ is 
the true value, and EP and EM are the errors 
associated with persistence forecast and model 
forecast, respectively. If the model forecast 
outperforms the persistence forecast, then EM must 
be smaller than EP. Based on (1) and (2), the skill 
score SS can be defined as : 



 

SS E E
E

P M

P
= ×− 100%               (3) 

 
where EP and EM can be any valid error metrics 
such as RMSE and NME (in this study RMSE is 
used to calculate the skill score). In fact, this 
definition of SS is exactly the same as the generic 

form (SSref
A A

A A
ref

perf ref
= ×

−
− 100% ) defined by Wilks 

(1995) and considering that a perfect forecast would 
have a zero error (Eperf = 0). 

 
Table 6 presents the discrete evaluation results 

comparing the three models, where mb is the mean 
bias in ppb, nmb is the normalized mean bias, nme 
is the normalized mean error, and R is the 
correlation coefficient.  Table 7 presents the 
categorical results; Table 8 the skill score results.  

 
Table 6: Phase 2 (NEAQS) Model Intercomparison: 

discrete evaluation results. 
MAQSIP-RT MM5-Chem HYSPLIT-

CHeM 
 

Max 1-hr Max 8-hr Max 1-hr Max 8-hr Max 
1-hr 

Max 
8-hr 

mb (ppb) 1.41 2.75 9.51 8.31 3.2 -1.16 
nmb (%) 2.24 5.02 15.01 15.1 5.13 -2.13 
nme (%) 17.96 18.55 25.81 25.38 23.42 22.46 
rmse (ppb) 14.63 13.04 21.25 18.18 19.05 15.84 
R 0.74 0.76 0.64 0.68 0.57 0.60 

 
Table 7: Phase 2 (NEAQS) Model Intercomparison: 

categorical evaluation results. 
MAQSIP-RT MM5-Chem HYSPLIT-CHeM  

Max 1-
hr 

Max 8-hr Max 1-
hr 

Max 8-hr Max 1-
hr 

Max 8-hr 

A (%) 99.16 85.82 96.96 76.17 98.98 89.53 
B 0.58 0.74 2.34 1.43 1.36 0.30 

CSI (%) 9.68 18.10 9.81 17.60 8.33 5.79 
POD (%) 13.95 26.72 29.81 36.38 18.18 7.12 
FAR (%) 76.0 64.04 87.24 74.58 86.67 76.27 

 
Table 8: Phase 2 (NEAQS) Model Intercomparison : 

skill scores for RMSE 
TSS (%) SSS (%) Conc. 

(ppb) MAQSIP MM5-
Chem 

HYSPLIT MAQSIP MM5-
Chem 

HYSPLIT 

All 9.57 -21.98 -15.85 9.75 -31.42 -15.52 
<40 2.37 -34.86 -24.82 10.50 -26.29 -3.13 
40-79 13.11 -39.58 -13.31 9.62 -50.85 -18.16 
80-119 6.53 -1.51 -23.99 9.72 -3.65 -19.81 
>=120 -32.39 -22.25 -59.74 7.88 12.67 1.57 

 
5.  PERFORMANCE EXPECTATIONS FOR ETA-  

CMAQ 
   

Currently, NOAA/NCEP has established a 
single metric—a categorical accuracy of 90%--as a 
target for acceptable performance for Eta/CMAQ 
(Davidson, et al., 2003). Since accuracy itself is very 
strongly influenced by box “d” in the contingency 
table (which does not include any of the high ozone 
episode days pertinent to planning ozone action 
days/health alerts), it is a relatively weak measure of 
performance. However, the CSI & POD scores are 
more relevant measures —while much more 
challenging to achieve at a high level of skill. 
Further, as shown here, additional evaluation and 

performance metrics —using the broad range of 
approaches identified above—should also be 
added. Since MAQSIP-RT is currently the most 
skillful model of all those tested in the 2001-02 pilot, 
it establishes a reference for eventual community 
acceptance of the emerging Eta/CMAQ  system. 
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