Application of OMI NO2 retrievals to the evaluation of NOx emissions from on-road mobile sources in the Great Lakes Region
Momei Qin1,* , Yongtao Hu1, M. Talat Odman1 and Armistead G. Russell1
1. Georgia Institute of Technology * Now at U.S. Environmental Protection Agency

Results and discussions

Tropospheric NO2 Columns in CMAQ vs. OMI

<table>
<thead>
<tr>
<th>Case</th>
<th>N</th>
<th>Mean Size</th>
<th>Mean Error</th>
<th>Fractional Bias</th>
<th>Fractional Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>104829</td>
<td>-0.69</td>
<td>0.83</td>
<td>-65%</td>
<td>76%</td>
</tr>
<tr>
<td>50% NO2</td>
<td>104829</td>
<td>-0.68</td>
<td>0.78</td>
<td>-88%</td>
<td>77%</td>
</tr>
</tbody>
</table>

50% NOx emission reduction (US mobile)

- Reduced model-satellite differences in urban areas (i.e., Chicago, Detroit)
- No significant changes in evaluation statistics (MB, ME, r2) compared to the base case

Conclusions

- CMAQ shows low biases in NOx columns/surface concentrations against OMI retrievals/ground-based measurements in rural areas, with high biases in urban areas (not in all locations)
- Decreased emissions from on-road mobile sources in CMAQ reduce differences of CMAQ simulations with OMI retrievals & ground-based measurements at the high end of NOx columns/concentrations in urban areas
- Overestimation of NOx columns in CMAQ relative to OMI occurs in locations where other sources (e.g., EGU) dominate as well, which needs further investigation

Acknowledgements

This research was funded by the Electric Power Research Institute grant number 10005953 and the National Aeronautics and Space Administration (NASA) Applied Sciences Program grant number NNX16AQ29G.

References

Goldberg et al., (2017). Doi: https://doi.org/10.5194/acp-17-11403-2017
McDonald et al., (2018). Doi: https://doi.org/10.1021/acs.est.8b00778
Napelenok et al., (2008). Doi: https://doi.org/10.5194/acp-8-5603-2008
Travis et al., (2016). Doi: https://doi.org/10.5194/acp-16-3561-2016

Methodology

Model-satellite comparison

CMAQv5.1
- One-way nested: 12 km/4 km (Fig. 1)
- Period of interest: July 2011
- 2011 NEI with in-line calculations for BEIS and point sources
- CB05s1
- Two runs
 - Base case
 - 50% of NOx emissions from mobile sources
- NOx vertical columns calculated using the 4-km simulation between 13:00 and 16:00 EST

Source apportionment of NOx using Decoupled Direct Method (DDM)
- The first-order sensitivity (βx) of NOx concentration to NOx emission from an individual sector reflects contribution of the NOx emission source to overall NOx concentration (with c1c2 of -1):
 \[C_{12} = C_E = \frac{E_E}{\sum E} = \frac{E_E}{C_E + \Delta C} \]
- On-road, pezu, nonroad, ptnonipm (point sources not included in EGU or oil/gas), c1c2 rail (C1 and C2 commercial marine emissions plus railroad emissions) and biess (i.e., NOx emission)
- Convert to contributions of NOx columns

Compared to ground-based measurements

- Significant underestimation of NOx surface concentrations at the low end in the CMAQ base case; mostly occurs in rural areas, with overestimation at urban & suburban sites at times (Fig. 5)

Conclusions

- CMAQ mostly underestimates NOx concentrations, regardless of location
- Reduction in NOx emissions decreases high biases of CMAQ NOx both in urban/suburban areas and at peaks (Fig. 6)
- Good agreement with measured NOx/NO during the surface during satellite pass-over time

Model-satellite Gap

Fig. 1 Modeling domains

Source apportionment of NOx using Decoupled Direct Method (DDM)

- The first-order sensitivity (βx) of NOx concentration to NOx emission from an individual sector reflects contribution of the NOx emission source to overall NOx concentration (with c1c2 of -1):
 \[C_{12} = C_E = \frac{E_E}{\sum E} = \frac{E_E}{C_E + \Delta C} \]
- On-road, pezu, nonroad, ptnonipm (point sources not included in EGU or oil/gas), c1c2 rail (C1 and C2 commercial marine emissions plus railroad emissions) and biess (i.e., NOx emission)
- Convert to contributions of NOx columns

Compared to ground-based measurements

- Significant underestimation of NOx surface concentrations at the low end in the CMAQ base case; mostly occurs in rural areas, with overestimation at urban & suburban sites at times (Fig. 5)