

Evaluation of CMAQ simulated NH_3 and $PM_{2.5}$ concentration in Taiwan with dynamical NH_3 emission parameterization

Chia-Hua Hsu, Fang-Yi Cheng

Department of Atmospheric Science, National Central University

Outline

- Introduction
- Observation and Method
- Model Configuration & Experiment design
- Model and observation data comparison
- Summary and Conclusion

Introduction

- Ammonia (NH₃) is an important precursor of PM_{2.5} and studies have shown that NH₃ have prominent diurnal and seasonal variation. (Gilliland et al,. 2006; Paulot et al., 2014, Pinder et al., 2006,)
- Apply diurnal or seasonal variation to NH₃ emission could reduce the NH₃ and PM_{2.5} simulated bias. (Pinder et al., 2006; Zhu et al., 2015)
- Based on 2010 Taiwan emission inventory (TEDS8.1), ammonia is majorly emitted by urban sewage (37%), livestock operation (36%) and agriculture activities (14%).

Introduction

- With the constant NH₃ emission rate, model create large bias in the simulated NH₃ and PM_{2.5}, especially induce high nitrate concentration.
- Urban sewage accounts for an extremely large portion of NH₃ emission (37%) in Taiwan compared to other emission inventory. (Huang et al., 2012, Bouwman et al., 1997, Kang et al., 2016, Street et al., 2004).

• The object of this study is :

- 1. Adopted a dynamical NH_3 emission parameterization to improve the diurnal and seasonal variation of NH_3 and nitrate.
- 2. Conduct an emission reduction experiment to clarify the problem of urban sewage emission.

Observation and Emission Data $_{_{\rm NH_3}}$

Obs	servation Networ	<u>k</u>
Туре	number	Data frequency
EPA stations	66	hourly
Super Sites Network	6	hourly
Acid Rain Network	9	daily

Diurnal and seasonal variation of observed NH₃

- Based on 2009-2010 observation, NH₃ have two peak in FEB-MAR and AUG in the agricultural region which reflect the major growing season, while urban region NH₃ remain at similar level.
- NH_3 has significant diurnal variation with higher(lower) NH_3 concentration during nighttime (daytime) in Taiwan .

- We calculate daily NH₃ emission following Gyldenkærne et al.(2005).
- Daily livestock emission of each county are calculated based on observed daily mean temperature (*T*) and wind speed (*V*), where *E* denoted the annual total emission and $E_{d,s}$ is daily emission, a(b) is 0.89(0.26):

- Daily rice fertilizer (E_f) and rice crop emission (E_c) are calculated based on Gaussian function and growing degree day (GDD)
- Daily other crop fertilizer emission are allocated following the monthly variation in MASAGE NH₃ inventory (Paulot et al., 2014)

$$E_{f} = E * exp^{0.0223T} exp^{0.0419W} \frac{1}{\sigma\sqrt{2\pi}} \times e^{(\frac{(t-\mu)^{2}}{-2\sigma^{2}})}$$
$$E_{c} = E * \frac{1}{\sigma\sqrt{2\pi}} \times e^{(\frac{(t-\mu)^{2}}{-2\sigma^{2}})}$$
$$GDD = \sum_{a}^{b} \frac{(T_{max} + T_{min})}{2} - 10$$

Region	First Rice	Second Rice		
Northern Taiwan	60	211		
Central Taiwan	46	201		
Southern Taiwan	32	191		

Rice Transplanting Day (Day of year)

	Fraction (%)	μ (mean of Gaussian function)	σ
1st	25	Transplanting Day - 3	7
2ed	25	176.3 (205.6)	7
3rd	30	337.5 (515.5)	7
4th	20	698.7 (890)	7
Rice	_	968.25 (1228.25)	25

- Daily rice fertilizer (E_f) and rice crop emission (E_c) are calculated based on Gaussian function and growing degree day (GDD)
- Daily other crop fertilizer emission are allocated following the monthly variation in MASAGE NH₃ inventory (Paulot et al., 2014)

- Other NH₃ sources (mobile, industry, biogenic, sewage) are equally distributed to each month.
- NH₃ emission have higher value in summer months and growing seasons (Feb -Mar, Jul - Aug).

- The diurnal variation of NH_3 follows the same method as daily NH_3 emission treatment, but *T* and *V* now are provided by WRF, $E_h(E_d)$ is hourly (daily) emission of each grid.
- Emission from mobile is applied by a double peak temporal profile.
- Emission from industry assume fixed emission rate throughout the day.

WRF version		WRF3.7.1			
WRF setting	D	D01		D02	
resolution	15	15 km 3km			
CMAQ version		CMAQv5.2			
Anthropogenic EMIS		TEDS8.1			
ASIA EMIS		MICSASIA 2010			
Chemical mechanism	1	CB05e51-AE6			
Biogenic EMIS		MEGAN2.04			
Experiment	diurnal variation	seasona variation	l 1	NH ₃ reduction	
Static(BASE)	-	-		_	
Dynamic (DYN)	V	v		_	
Dynamic1 (DYN1)	v	v		V	

WPS Domain Configuration

Model Configuration & Experiment design

- In this study, we propose three experiments (**BASE, DYN,DYN1**) to investigate the result of NH₃ treatment. <u>DNY1 reduce 80% of urban</u> sewage emission (29.4 % of total NH₃).
- Based on the weather classification (Hsu and Cheng, 2016), we choose studying cases that include weak synoptic forcing days → have higher pollutants level and less LRT pollutants.

Simulation Time Period					
Time Duration	Weak Synoptic Forcing Days				
2010/01/02 - 2010/01/08	2				
2010/02/03 - 2010/02/10	6				
2010/02/19 - 2010/02/28	6				
2010/03/09 - 2010/03/19	6				
2010/05/26 - 2010/05/31	2				
2010/06/22 - 2010/06/28	0				
2010/07/15 - 2010/07/25	8				
2010/08/22 - 2010/08/28	5				
2010/10/05 - 2010/10/14	3				
2010/11/10 - 2010/11/14	1				
2010/11/25 - 2010/11/30	3				
2010/12/08 - 2010/12/13	6				
2010/12/16 - 2010/12/21	5 12				

Result - Diurnal variation of NH₃

- BASE case overestimate NH₃ significantly during nighttime.
- DYN case improve the simulation result but still overestimate NH₃ by a factor of 3 in the urban region. → Too much emission in the urban region

Result - Diurnal variation of NH₃

- BASE case overestimate NH_3 significantly during nighttime.
- DYN case improve the simulation result but still overestimate NH_3 . ٠
- In urban region, DYN1 is much closer to the observation, but the overestimation still ٠ exist in agriculture region.

Result - Monthly variation of NH₃

- Dynamical NH₃ treatment improve the seasonal variation of simulated NH₃.
- In urban region, <u>DYN1 shows good agreement with observation</u>.
- In agricultural region, DYN and DYN1 over-predict NH_3 in growing season.

Result – Monthly and diurnal variation of NO_3^-

- BASE overestimate NO_3^- during nighttime due to high NH_3 .
- DYN1 still over-predict $NO_3^- \rightarrow$ overestimate of NOx and NH_3

Result – Monthly and diurnal variation of NO_3^-

- BASE run overestimate NO_3^- during nighttime due to high NH_3 .
- Large bias occurs from October to January

Overall simulation result of NO_3^- and NH_3

- NO_3^- shows large difference in urban, particular in northern Taiwan.
- In agricultural region, NO_3^- did not show large difference.
- The dynamical NH_3 treatment has little impact on SO_4^{2-} concentration.

Model and observed NH₄ wet deposition comparison

- Only the data with $0.25 \le \frac{P_{\text{mod}}}{P_{\text{obs}}} \le 4$ are used in comparison.
- BASE and DYN overestimate NH₄ wet deposition, DYN1 reduce the bais.
- Large improvement occurs in northern Taiwan (Taipei, Anbu) and SML sites.
- In the central to southern Taiwan, model tend to underestimate NH₄ wet deposition.

Summary

- Implementing dynamical NH₃ emission parameterization :
- \rightarrow Improve diurnal and seasonal variation of NH₃ and nitrate
- \rightarrow Reduced positive bias of nitrate
- In the DYN1, NH₃ show good agreement in the urban region and simulated NH₄ wet deposition is improved \rightarrow too much urban sewage emission
- DYN and DYN1 still overestimate NH₃ in agricultural region
- \rightarrow Overestimated of livestock emission ?
- \rightarrow Other crop fertilizer and crop emission treatment

 \rightarrow Apply NH₃ bi-directional model <u>to better simulate NH₃ land-atmosphere</u> <u>interaction in the agriculture region</u>

 Need process-base model or inverse modeling to provide a better NH₃ emission inventory in Taiwan. The End Q & A

- Why urban (household) sewage emission is overestimated ?
 → super high emission factor (50.4 kg/10⁶ L) ~ 50.4 g/m³
- Why DYN1 still over-predict NH₃ during night time?
 - \rightarrow diurnal profile
 - \rightarrow low PBLH during night time (< 30 meter)

		Average	R	MB	NMB(%)	NME (%)	RMSE
T2M (°C)							
	OBS	23.14	-	-	-	-	-
	WRF	22.80	0.97	-0.34	-1.13	5.39	1.51
WS10 (m/s))						
	OBS	1.53	-	-	-	-	-
	WRF	2.38	0.54	0.85	139.14	153.22	1.45
PM _{2.5} (µg/m	n ³)						
	OBS	35.68	-	-	-	-	-
	STD	26.79	0.54	-8.89	-15.59	57.13	24.78
	DYN	26.65	0.54	-9.03	-15.83	57.07	24.71
	DYN1	24.31	0.54	-11.37	-22.82	55.94	24.26
SO₂ (ppb)							
	OBS	4.73	-	-	-	-	-
	STD	3.80	0.29	-0.93	-3.15	77.66	4.66
	DYN	3.80	0.29	-0.92	-2.94	77.70	4.66
	DYN1	3.90	0.29	-0.83	0.19	77.52	4.64
NOx (ppb)	0.5.0	25 50					
	OBS	27.70	-	-	-	-	-
	STD	29.64	0.49	1.94	23.46	/1.88	24.73
8	30 -						
			т т ¦ т				
			-			. It It t	.
Ć	50 - ₁	Ţ	т		Ţ		
ŝ	T T		The second secon				
(ppt	10			т	т		
ŏ				ТТТ			
2				T			
2					I	1 1 ¹ 1	
-							
	0 -						
	L	4	8	12	16	20	' 24
			Hour	(Local Time)	10		

Why DYN1 still over-predict nitrate during winter?

- \rightarrow Excessive precursor (NH₃, NOx)
- → Meteorological condition (low PBLH, stagnant wind field)

Oct - Dec

Model and observed PM_{2.5} speciation data comparison

- Observed $NH_4^+ = \frac{(SO_4^{2-} \times 2)}{96} + \frac{NO_3^-}{62}$
- BASE run overestimate NO_3^- (NH₄⁺) during nighttime due to high NH₃ value.

