Background

Studies have attempted to evaluate emissions inventories by examining measured vs. modeled precursor concentrations and ratios. Some of these studies have shown that modeled NOx and/or NOy concentrations are over-predicted and hypothesized that mobile source inventories may be an important part of those over-predictions. In addition to the absolute number of annual tons of emissions, an important aspect of modeling is the temporalization of annual, seasonal, and/or monthly inventory information down to the hourly input level which is needed by chemical transport models (CTMs).

CAMx Sensitivity Studies

This study examined the impact of changing day-of-year, day-of-week, and hour-of-day temporal profiles for some EGUs, on-road mobile emissions, and non-road mobile emissions.

CAMx Model Run	Scenario Name	Description
CAM 2011 base case	Base case	2011 emissions and meteorology
	-2.5km resolution	-Continue U.S. model domain

Sensitivity #1 | EGU non-CEMS temporal profile | Flat day-of-year temporal profile for non-CEMS EGUs burning "other fuel" (mostly municipal waste incineration)

Sensitivity #2 | On-road mobile temporal profile sensitivity | Replace state diurnal profiles with EPA national profiles derived from "VTRIS" data

Sensitivity #3 | Non-road mobile temporal profile and emissions sensitivity | Update diurnal profiles for construction, law and garden, and agricultural equipment; increase growth in equipment population by reducing non-road emissions by ~7%

After examining emissions patterns, NOx, and ozone concentrations in the 2011 CAMx base case, several sensitivity runs were performed to explore the impacts on modeled concentrations. Sensitivity runs 1 and 2 only adjusted temporal profiles, with no adjustments to annual emissions. Sensitivity 3 combines non-road hour-of-day temporal adjustments with a NOx emissions reduction of ~7%.

EGU Temporal Profiles (non-CEMS sources)

There are a number of point sources that generate electricity that do not have CEMS data. The hourly emissions for these sources were temporalized using regional average profiles for some EGU emissions, on-road emissions, and non-road mobile emissions.

Several alternative temporal profiles were proposed for non-road equipment categories with high overall emissions. In the 2011 base case, the same default profile was used for construction, lawn and garden (residential and commercial), and agricultural equipment. The default profile (yellow line in the plot below) has a gradual peak in the afternoon, with a significant fraction of emissions overnight.

On-road Mobile Temporal Profiles

The 2011 base case used several different data sources to derive hour-of-day temporal profiles for on-road mobile sources. The map below shows where EPA default data (derived from "VTRIS") was used (grey) vs. state submitted data (green and yellow).

In addition to the absolute number of annual tons of emissions, an important aspect of modeling is the temporalization of annual, seasonal, and/or monthly inventory information down to the hourly input level which is needed by chemical transport models (CTMs).

Several alternative temporal profiles were proposed for non-road equipment categories with high overall emissions. In the 2011 base case, the same default profile was used for construction, lawn and garden (residential and commercial), and agricultural equipment. The default profile (yellow line in the plot below) has a gradual peak in the afternoon, with a significant fraction of emissions overnight.

While some construction emissions can be expected in the overnight hours, we would expect minimal overnight emissions from the lawn and garden and agricultural sectors. For sensitivity run #3, the temporal profiles for these sources were replaced with profiles with fewer overnight emissions and higher daytime peaks.

In addition to the non-road temporal profiles changes, sensitivity run #3 also includes a ~7% reduction in non-road NOx emissions based on preliminary testing of revised equipment population growth rates in the NONROAD model. The growth rates currently used in NONROAD are thought to overestimate equipment populations in most equipment categories beyond the 1998-2000 population base years. While the revised growth rates are not publically available at this time, sensitivity run #3 tests the potential impact of this adjustment.

Conclusions and Follow-up

Conclusions

- The change in ozone, NOx, and NOy due to the three CAMx sensitivity runs was relatively small and does not eliminate the overall NOx/NOy bias.
- Modeled concentration changes due to the (non-CEMS) EGU sensitivity run (#1) were small on most days, but ozone and NOx reductions were large on several days in July. In areas close to municipal waste combustors, most notably on July 21st and 22nd.
- Modeled concentration changes due to the on-road mobile temporal profile sensitivity (#2) were small, even in states where the profiles changed.
- NOx and NOy concentration changes due to the non-road temporal profile and emissions adjustments were relatively small and varied by time of day and location.
- NOx changes were larger at night due to the emissions adjustments and the change in nighttime allocations of non-road emissions.

Follow-up

- Even though most of the sensitivity runs led to relatively small changes in ozone and NOx concentrations, many of the temporal profile changes should be permanently implemented in future model runs because they are improvements.
- Additional analysis of the non-road equipment population and growth rates is needed to better quantify the current and future year non-road emissions.
- State and/or county specific equipment populations and/or growth rate adjustments are needed to most accurately model local conditions.

Discover-AQ NOY Aircraft Data

Discover-AQ aircraft NOY data for the Baltimore-Washington area for July 2011 was compared to the modeled CAMx base case and sensitivity cases. The aircraft data is available for 14 days in July. Below is the NOy mean bias (MB) and normalized mean bias (NMB) by flight day and model run.

<table>
<thead>
<tr>
<th>Day</th>
<th>3a</th>
<th>3b</th>
<th>Sensitivity</th>
<th>MB (ppb)</th>
<th>NMB (%)</th>
<th>MB (ppb)</th>
<th>NMB (%)</th>
<th>MB (ppb)</th>
<th>NMB (%)</th>
<th>MB (ppb)</th>
<th>NMB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2nd</td>
<td>0.00</td>
<td>0.00</td>
<td>Base case</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>July 3rd</td>
<td>0.51</td>
<td>0.51</td>
<td>Sensitivity #1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>July 4th</td>
<td>0.04</td>
<td>0.04</td>
<td>Sensitivity #2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>July 5th</td>
<td>0.00</td>
<td>0.00</td>
<td>Sensitivity #3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Example day-of-year temporal profile for EGU sources ("new/"other") in Eastern Virginia. Up to 7% of the annual emissions are emitted on a single day.