Quantifying Co-benefits of CO₂ Emission Reductions in Canada and the United States: An Adjoint Sensitivity Analysis

Marjan Soltanzadeh, Amanda Pappin, Shunliu Zhao, Amir Hakami (Carleton University); Matt D. Turner, and Daven K. Henze (University of Colorado); Shannon Capps (Drexel University); Peter B. Percell (University of Houston); Jaroslav Resler (ICS Prague); Jesse O. Bash, Kathleen Fahey, Sergey L. Napelenok (USEPA); Rob W. Pinder; Armistead G. Russell and Athanasios Nenes (Georgia Tech); Jaemeen Baek, Greg R. Carmichael, and Charlie O. Stanier (University of Iowa); Adrian Sandu (Virginia Tech); Tianfeng Chai (University of Maryland); Daewon Byun (NOAA)

October 2016 CMAS

Outline

- Introduction
- Methodology
- Results
- Discussion

Introduction

- Co-benefits due to reduced emissions of criteria pollutants (or their precursors)
 - Air pollution impact on human health (PM, O₃, and NO₂)
 - Not considering the climate feedback on air quality
- CO₂ reduction co-benefit or coincident health air pollution damage: dependent on the policy measure
 - Sectoral
 - Spatial
- Co-benefits due to reduced chronic exposure mortality
 - Reduced NO_X emissions \rightarrow reduced O₃/NO₂ health impacts (presented before)
 - Reduced primary (e.g., EC, OC) and precursor (SO₂, NH₃, NO_x) emissions
 - \rightarrow reduced PM_{2.5}, health impacts

Methodology

- Adjoint-based marginal benefits (MBs or benefit-per-ton) based on Pappin et al. (2013)
- Concentration response functions (CRFs):
 - Canada
 - PM, O3, NO2 from Crouse et al. (2015)
 - Nonlinear CRF for PM and NO₂; Pappin et al. (2016)
 - U.S.
 - O3 from Bell et al. (2004)
 - PM based on Krewski et al. (2009)

Marginal Benefit Estimation: Adjoint model

- Influences on nationwide mortality are traced back to individual sources (Pappin and Hakami, 2013)
- Full CMAQ-Adjoint (gas-phase for O₃/NO₂ simulations)
- 36 km CONUS domain
- 34 vertical layers
- O3/NO₂ Modeled over ozone season of May-September 2007 (153 days)
- PM_{2.5} is modeled over 1 month (April) of 2008 (30 days)

Adjoint-based MBs

- Full CMAQ adjoint
- Adjoint of aerosol processes is working (finally!) and seems stable
 - Currently undergoing further evaluation

NO_X Marginal Benefit (no PM): Surface Sources

USA

Canada

PM_{2.5} Marginal Benefit: Surface Sources

USA

Canada

PEC Marginal Benefit: Surface Sources

USA

NH3 Marginal Benefit: Surface Sources

USA

Canada

SO₂ Marginal Benefit: Surface Sources

Canada

SO₂ Marginal Benefit: Surface vs. Point Sources

NO_X/CO₂ Emission Ratio: Mobile On-road

Major sectors

NO _x	PM _{2.5}	SO ₂	NH ₃	CO ₂
1.Mobile-DH	1.Fires	1.EGUs (coal)	1.Agriculture	1.EGUs (coal)
2.Mobile-GL	2.Dust	2.Industrial boiler	2.Fires	2.Mobile-GL
3.EGUs (coal)	3.EGUs (coal)	3.Industrial processes	3.Mobile-GL	3.Mobile-DL

Three sectors associated with the highest pollutant and CO₂ emissions

MBs in comparison with literature

	Primary PM (PEC + POC) MBs, Mobile (\$/ton)			
Urban Area	Fann et al. (2009)	This work		
Atlanta	\$590,000	\$1,000,000		
Chicago	\$580,000	\$3,460,000		
Dallas	\$790,000	\$290,000		
Denver	\$450,000	\$1,270,000		
NY/Phi	\$710,000	\$7,920,000		
Phoenix	\$1,700,000	\$2,410,000		
Seattle	\$570,000	\$2,330,000		

Results - I Mobile On-road

Emissions Data Sources - Mobile Sector

 NO_X, PM_{2.5}, NH₃, SO₂ and CO₂ from 2011 NEI

 County-level data gridded to 36-km resolution

- Criteria pollutants:
 Environment & Climate
 Change Canada. Air
 Pollutant Emission
 Inventory Online Data
 Query (APEIODQ)
- CO₂: Canadian national inventory reports(2011)

NO_X Co-benefit (O₃): Mobile On-road

Gasoline Light Duty

PM_{2.5} Co-benefit (primary): Mobile On-road

Gasoline Light Duty

0.5 1 5 10 50 100 500 \$/ton CO2

Total Co-benefit: Mobile On-road

Gasoline Light Duty

Total Co-benefit: Mobile On-road

Gasoline Light Duty

\$/ton CO2

Total Co-benefit : Mobile On-road

Total Co-benefit : Mobile On-road

Results - II Point Sources

Emissions Data Sources – EGUs

USA

- For SO₂,NO_X and CO₂: Air Markets Program Data (AMPD)
- For PM_{2.5} and NH₃: EPA Google fusion tables and maps
- For CO₂: EPA Facility Level GHG emission Data (Flight)

Canada

- For SO₂, NO_x, and CO₂: National Pollutant Release Inventory (NPRI)
- For CO₂: Canada's GHG emission inventory

 Cross-reference between NPR ID and GHGRP ID

Total Co-benefit: EGUs

USA

Total Co-benefit : EGUs

Total Co-benefit: Oil & Gas

Policy Relevance Example: Clean Power Plan

EGUs along the Ohio River Valley have total cobenefits ranging \$80-5000.

- Adjoint-based co-benefits provide an opportunity for coordinating climate and air quality policies.
- A grand plan to reduce CO₂ emissions from EGUs without consideration of co-benefits and exploiting their wide range is likely to miss a great opportunity for synergistic cost-effectiveness.

Policy Relevance Example: Electrification of Transportation

MBs for New York City mobile sources are: LDGV: \$1350 HDDV: \$3300

- Targeted electrification can be far more beneficial than previous studies have indicated.
 - Would require more thorough examination (LCA, demand constraints, transmission, etc).
- Due to the wide range of co-benefits across various locations, targeted electrification seems more beneficial than across-the-board measures.
 - Adjoint, due to its source specificity, is particularly suitable for guiding targeted electrification.

Discussion

- Co-benefit values are comparable to those found previously in scenario-based studies (e.g. Nemet et al., 2010), but significantly larger at specific locations.
- Estimated co-benefits are larger than the price of carbon or its social cost.
- Co-benefits provide a great opportunity for coordinating climate and air quality policies in a cost-effective manner.
 - Such coordination would benefit from uniform criteria pollutant and GHG modelling tools – how can SMOKE model GHGs?

Acknowledgments

• NSERC, and Health Canada for providing funding.

THANK YOU