
Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

1

A THREAD PARALLEL SPARSE CHEMISTRY SOLVER FOR CMAQ 5.1

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

This presentation reports on implementation of

the parallel sparse matrix solver, FSparse, in the
Chemistry Transport Model (CTM) in CMAQ [1].
This is applicable in the CMAQ version that uses
either the Rosenbrock (ROS3) or SMV Gear
(GEAR) algorithms in the CTM. In this report
results of thread parallel versions of the EBI and
ROS3 solvers is presented while the GEAR
algorithm is deferred for future study. In FSparse
different blocks of cells are distributed to separate
threads in the parallel thread team. Along the way
some bugs and peculiarities in the CMAQ code
interaction with the compiler of choice were
uncovered. Species concentration values are
compared for original and FSparse methods using
VERDI and inspection of residual norms in the
sparse solver. Some comments on numerical
analysis is presented based on the comparisons.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Each of the two nodes host two Intel
E5v3 CPUs with 16 cores each. Each node has, in
addition, four Intel Phi co-processor many
integrated core (MIC) cards with 60 and 59 cores
for the respective models. With four MIC cards per
node, and up to 4 threads per MIC core, the total
thread count is 960 and 944, respectively. This
combination allows for testing of hybrid parallel
versions of CMAQ on either host or first
generation Intel Phi processor [2]. In the latter
case the thread parallel region of the CTM is
offloaded to the Phi processors.

2.2 Compiler

This report implemented the Intel Parallel
Studio® suite (release 16.0) using options for
either host CPU or Phi coprocessor. The latter
required code modification to identify MIC

* Corresponding author: George Delic,

george@hiperism.com.

attributes within a single source code. The
extensive reporting options were used to
investigate optimization effectiveness.

2.3 Episode studied

This report used the benchmark test data
available in the CMAQ 5.1 download. This model
episode was for July 1st, 2011, using the
cb05e51_ae6 mechanism with 147 active species
and 343 reactions. For day/night chemistry this
results in 1224/1158 non-zero entries in the
Jacobian matrix. The episode was run for a full 24
hour scenario on a 100 X 72 California domain at
12 Km grid spacing and 35 vertical layers for a
total of 252,000 grid cells. This domain is some
ten times smaller than that reported previously in
[1]. In this report a variable number of MPI
processes (NP) were used in the EPA version of
CMAQ and only NP=1 in the OpenMP version.

Table 2.1. CPU platforms at HiPERiSM Consulting, LLC

Platform Node20 Node21

Operating system SuSE Linux 13.2 SuSE Linux 13.2

Processor Intel™ IA32
(E5-2698v3)

Intel™ IA32
(E5-2698v3)

Coprocessor 4 x Intel Phi
7120

4 x Intel Phi
5110

Peak Gflops
(SP/DP)

589 (SP) 589 (SP)

Power
consumption

135 Watts 135 Watts

Cores per
processor

16 16

Power per core 8.44 Watts 8.44 Watts

Processor count 2 2

Total core count 32 32

Clock 2.3 GHz 2.3 GHz

Bandwidth 68 GB/sec 68 GB/sec

Bus speed 2133 MHz 2133 MHz

L1 cache 16x32 KB 16x32 KB

L2 cache 16x256 MB 16x256 KB

L3 cache 40 MB 40 MB

In the following two performance metrics are

introduced to assess thread parallel performance
in the OpenMP modified code:

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

2

(a) Speedup is the gain in runtime over the
standard U.S. EPA version,

(b) Scaling is the gain in runtime with thread
counts larger than 1, relative to the result
for a single thread.

3. RESULTS FOR THE STANDARD MODEL

3.1 EBI solver on host

This section summarizes results of the
standard CMAQ 5.1 distribution in the testbed
environment identified in Section 2. The
optimization level was “-O2” because higher
optimizations caused segmentation faults
(segfaults) at runtime. The combination of MPI
processes, NP = NPROW x NPCOL, are those
shown in Table 3.1 for the EBI solver algorithm.

Table 3.1. Wall clock times (in seconds) for the U.S.
EPA EBI version of CMAQ on Intel host CPUs.

NPROW
X

NPCOL

EBI

Value of NPCOL

1 2 4 8

1 10733

2 5601

4 3128 3103

8 1916 1854 1858

12 1422

16 1309 1220 1189 1188

24 966 931

32 916 788 771

Fig. 3.1 shows that, while the wall clock time

declines, efficiency also decreases for higher MPI
process counts. This is more clearly reflected in
Fig. 3.2 which shows the parallel efficiency as a
function of increasing MPI process count. Parallel
efficiency is the speedup versus 1 MPI process
divided by the the number of MPI processes. This
is below 50% with more than 16 MPI processes
and as low as 37% with 32 MPI processes, i.e.
host cores are idle for as much as two thirds of the
wall clock time.

3.2 All CTM solvers on host

For all available solvers the standard model
was compiled with “-O1” because again segfaults
occurred when higher optimizations were used for
ROS3 or GEAR solver versions of CMAQ.

A breakdown of where time is expended in
CMAQ 5.1 science processes is shown in Fig. 3.3
for GEAR, ROS3, and EBI solver algorithms. The
relative fraction of total wall clock time is shown as
a percentage in Fig. 3.4.

Fig 3.1: Wall clock time from Table 3.1 versus number
of MPI processes for the EBI solver version.

Fig 3.2: MPI parallel efficiency versus number of MPI
processes for the EBI solver version

Fig 3.3: Wall clock time by science process for EBI,
ROS3, and GEAR versions of CMAQ for NP=1.

The totals of wall clock time for each version
with various values of NP is shown in Table 3.2.

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

3

Obviously, wall clock time increases as the solver
changes from EBI, to ROS3 and then GEAR. For
example, with NP=16 the ratio in time is 1:1.5:1.9.
However, as shown in Fig. 3.5, the parallel
efficiency declines to ~70% when NP=16, and
~30% when NP=64. This loss in parallel efficiency
is due to the diminished work load per MPI
process with a domain of 252,000 cells. When
partitioned amongst the available number of MPI
processes, after division into blocks of 50 cells:
252,000/50 = 5040 blocks for NP = 1, and 5040 /
NP thereafter, when NP > 1.

Fig 3.4: Fraction of wall clock time (percent) by science
process for EBI, ROS3, and GEAR versions of CMAQ
for NP=1. Note that CHEM is not the dominant process
for the EBI case.

Table 3.2. Wall clock times (in seconds) for the U.S.
EPA version of CMAQ on Intel host CPUs.

NPROW
X

NPCOL

CTM solver algorithm

EBI ROS3 GEAR

1 11881 16350 25229

4 3338 4790 7788

16 1164 1508 2239

64 624 941 1180

3.3 MPI performance on host

Table 3.3. Wall clock times (in seconds) for the U.S.
EPA version of CMAQ on Intel host CPUs showing
fraction of time in MPI calls.

NPROW
X

NPCOL

Model versus MPI time

EBI
code

MPI
Ratio of MPI

time

2 1.08e+04 0.53e+03 4.6%

4 1.23e+04 1.11e+03 8.2%

8 1.31e+04 2.03e+03 13.4%

16 1.66e+04 6.69e+03 28,7%

32 2.56e+04 1.57e+04 38.0%

Fig 3.5: Parallel efficiency versus number of MPI
processes for all three solver algorithms.

The VTune performance analyzer was used to
study the MPI performance of the EPA version of
CMAQ 5.1. Table 3.3 shows the increasing
fraction of wall clock time spent in MPI procedures
to demonstrate another factor in diminishing
parallel efficiency. Fig. 3.6 shows the top MPI
functions for the case of 32 MPI processes.

Fig 3.6: VTune shows the time used by MPI for NP=32.

4. OpenMP MODEL ON THE HOST

4.1 EBI and ROS3 speedup versus EPA

An OpenMP modification was implemented in
the standard CMAQ version of the CTM (CHEM)
procedure since the dominant amount of time is
expended there for ROS3 and GEAR solvers (see
Fig. 3.4).

Fig. 4.1 shows timing of the OpenMP parallel
region in the CTM for the 288 calls to CHEM in the
EBI version for a 24 hour simulation. With 8
threads the speedup over the standard EPA
version ranges from 1.5 to 2.3. Using an average
of 1.9, this suggests that since EBI expends ~28%
of the wall clock time (see Fig. 3.4) the best overall
speedup to be expected is ~14%, and in practice
~11% is observed. The AERO science process
dominates the wall clock time in the EBI algorithm

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

4

Fig 4.1: Speedup over EPA in 288 calls to CHEM with
EBI for 4, 6, and 8 threads, for NP=1 MPI processes.

Fig. 4.2 shows timing of the OpenMP parallel

region in the CTM for the 288 calls to CHEM in the
ROS3 version on the host. Since a larger fraction
of the total time is expended in calls to CHEM in
the ROS3 algorithm (see Fig. 3.4), the OpenMP
speedup over the standard EPA version is greater
than in the EBI algorithm. The average speedup
over the standard EPA version (in 288 calls to
CHEM) ranges from 1.3 (4 threads) to 4 (20
threads). For a 24 hour simulation, Fig. 4.3 shows
that the thread speedup (OMP) versus the EPA
(EPA) version in overall wall clock time is 1.4 with
20 threads. When compared to the EPA version
this translates to a 29% reduction of wall clock
time with 20 threads, and 20% is achieved with 8
threads. The diminution of performance gain with
higher thread counts is due to the smaller
partitions of work per thread calculated from 5040
blocks of cells divided amongst the number of
available threads. Grid cells are partitioned into
blocks of size 50 and these blocks are distributed
to threads in a thread team in the OpenMP
version.

5. OpenMP MODEL ON THE Phi

5.1 ROS3 speedup versus EPA

Fig. 5.1 shows timing of the OpenMP parallel
region in the CTM for the 288 calls to CHEM in the
ROS3 version on the Intel Phi processor.

Fig 4.2: Parallel thread speedup over EPA in 288 calls
to CHEM with ROS3 for 1 to 20 threads on the host, for
NP=1 MPI processes.

Fig 4.3: Parallel thread speedup (upper curve) of the
entire 24 hour simulation over the EPA version of ROS3
for 1 to 24 threads on the host with NP=1 MPI process.

Fig 5.1: Parallel thread speedup over EPA in 288 calls
to CHEM with ROS3 for 30 to 180 threads on the Phi,
for NP=1 MPI processes.

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

5

Fig 5.2: Parallel thread speedup (upper curve) of the
entire 24 hour simulation over the EPA version of ROS3
for 30 to 180 threads on the Phi with NP=1 MPI process.

Fig. 5.2 shows that the thread speedup (OMP)

versus the EPA (EPA) version in overall wall clock
time is 1.35 with 180 threads. When compared to
the EPA version this translates to a 26% reduction
of wall clock time with 180 threads, and > 20%
achieved with 90 threads.

5.2 Performance snapshots on the Phi

Real time performance is observable on the
Intel Phi. Fig 5.3 shows the time series with the
peaks representing two offload regions from the
host to one Phi card. This shows utilization at 75%
at the offload segment because only 180 of a
possible 240 threads are active.

Fig 5.3: Time series snapshot with 180 threads.

Fig 5.4: Core utilization snapshot with 180 threads.

For the same case, Fig. 5.4 shows that 60

cores are active during an offload segment, with
three threads on each core making a total of 180
threads. Each call to the CTM has two offloads to
the Phi corresponding respectively to the block
reo-ordering and solve steps. Data is moved from

CPU to the Phi with each offload: 269 MB for the
reorder step, and 416 MB for the solve step.

6. NUMERICAL AND CODE ISSUES

6.1 Norms in the chemistry solver

To understand numerical accuracy metrics are
used to show precision after the decomposition
and solve steps of the sparse linear system Ax =
y. Such metrics are easily monitored in the
FSparse algorithm with an option to calculate
several types of norms including |A|, |x|, and |Ax-
y|, as summarized in Table 6.1. The length of the
vector (Ax-y, or x) is the number of species. The
“inf” norm selects the maximum value of each
vector, Ax-y (residual), or x (solution), respectively.
The statistic of Table 6.1 is then computed as
either the mean over all 50 cells in a block, or
sampled for a specific cell number in the block.

Table 6.1. Metric for chemistry solver of CMAQ 4.7.1
with ROS3 for each block of the entire domain.

value metric

norm
Statistic (calculated

over all cells in a block)

Residual norm(Ax – y, inf)
mean,

standard deviation,
coefficient of variation.

Solution norm(x, inf) mean

In the FSparse method the residual remains

negligibly small in the FSparse algorithm for the
chemistry solver.

6.2 Comparing concentration values

Any discrepancy between predictions of the
JSparse [3] and FSparse [1] algorithms in the two
methods is explained by the way precision is
treated in each. The Chemistry solver uses double
precision arithmetic but accepts some input data
from single precision variables (temperature,
pressure, photolysis rates, reaction rates, etc.).
Any loss in precision is amplified as the solution
progresses in the three Rosenbrock solve stages.
Therefore all expressions in FSparse are
performed in double precision. The acid test is to
compare the computed concentration values for
selected species as predicted by the EPA (using
JSparse) and the thread parallel version (using
FSparse). Careful inspection of these
concentration values for selected species (O3,
NOx, etc) for the entire domain and all 24 time
steps showed differences within the RMS

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

6

tolerance controlling convergence in the ROS3
algorithm.

6.3 Code issues uncovered in this study

Several code issues were uncovered during
this implementation using the CMAQ 5.1 download
of the original EPA version from the CMAS site.
These included the following:

 In ~ /models/JPROC/jproc_table/ the

files srband.f and intavg.f have interface

errors.

 In bldit.cctm script the preprocessor uses a

reserved name in “set PAR=(-Dparallel

)” that corrupts OpenMP directives.

 More than 60,000 compiler warnings such as
“This name has not been given an

explicit type”

 Warning messages of the type “Global name

too long”

 Warning messages of the type “Source line

truncated”

 Warning messages of the type “A dummy
argument with an explicit

INTENT(OUT) declaration is not

given an explicit value”

To avoid termination of the compilation the
warnings were disabled with the compiler option

choice “-warn all,nodeclarations,nounused”

while others required source code and script
modifications. It was also found that higher
optimization such as -O2 and –O3 produced
executables that resulted in segfaults. These could
be related to the choice of other compiler options,
the version of the compiler used, and the platform.

7. LESSONS LEARNED

7.1 Benefits of the FSparse method

Comparing runtime performance for CMAQ
5.1 in the new OpenMP parallel version with the
U.S. EPA release showed benefits such as:

 A speedup ~1.4 for the ROS3 algorithm
on either multi-core host or many-core
MIC processors thereby bring the wall
clock time comparable to that of the EBI
version (cf Table 3.2).

 A single source code version of the CTM.
 Thread parallel efficiency that was

comparable to that of MPI processing.
 Hybrid MPI+OpenMP algorithms that offer

more on-node compute intensity as the

number of available threads rises to 100’s
and beyond.

 Numerical values of predicted
concentration that are within the error
tolerance inherent in the algorithms.

7.2 Next steps

A continuation of this work would include:
 Removal of blocking of cells and

application of the CTM to individual cells
to increase the accuracy of the model.

 Extension of the thread based model to
the Gear solver for CMAQ.

 Exploring a relaxation of the chemistry
time step convergence error criterion to
further reduce runtime.

 Implementing further compiler and
implementation tuning opportunities.

 A port to the 2nd generation Intel Phi
processor

8. CONCLUSIONS

This report has described an analysis of
CMAQ 5.1 behavior in the standard U.S. EPA
release and a new thread parallel version of
CMAQ for the Rosenbrock solver. Opportunities
exist for speedup with an increasing number of
parallel threads that reaches the range 1.4 over
the standard CMAQ release for the Rosenbrock
solver.

Further opportunities remain for thread
parallelism in other parts of the CMAQ model
outside of the solver and work in this direction
continues at HiPERiSM Consulting, LLC. The new
FSparse version of ROS3 offers layers of
parallelism not available in the standard U.S. EPA
release and is portable across multi- and many-
core hardware and compilers that support thread
parallelism.

REFERENCES

[1] Delic, G., 2012, 2013: see presentation at the Annual
CMAS meetings (http://www.cmasecenter.org).

[2] INTEL: Intel Corporation, http://www.intel.com

[3] Jacobson, M. and Turco, R.P., (1994), Atmos.
Environ. 28, 273-284

http://www.cmasecenter.org/
http://www.intel.com/

