
Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016 

1 

A THREAD PARALLEL SPARSE CHEMISTRY SOLVER FOR CMAQ 5.1 
 

George Delic* 
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA 

 
 

1. INTRODUCTION 
 
This presentation reports on implementation of 

the parallel sparse matrix solver, FSparse, in the 
Chemistry Transport Model (CTM) in CMAQ [1]. 
This is applicable in the CMAQ version that uses 
either the Rosenbrock (ROS3) or SMV Gear 
(GEAR) algorithms in the CTM. In this report 
results of thread parallel versions of the EBI and 
ROS3 solvers is presented while the GEAR 
algorithm is deferred for future study. In FSparse 
different blocks of cells are distributed to separate 
threads in the parallel thread team. Along the way 
some bugs and peculiarities in the CMAQ code 
interaction with the compiler of choice were 
uncovered. Species concentration values are 
compared for original and FSparse methods using 
VERDI and inspection of residual norms in the 
sparse solver. Some comments on numerical 
analysis is presented based on the comparisons. 
 

2. TEST BED ENVIRONMENT 
 

2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 
Table 2.1. Each of the two nodes host two Intel 
E5v3 CPUs with 16 cores each. Each node has, in 
addition, four Intel Phi co-processor many 
integrated core (MIC) cards with 60 and 59 cores 
for the respective models. With four MIC cards per 
node, and up to 4 threads per MIC core, the total 
thread count is 960 and 944, respectively. This 
combination allows for testing of hybrid parallel 
versions of CMAQ on either host or first 
generation Intel Phi processor [2]. In the latter 
case the thread parallel region of the CTM is 
offloaded to the Phi processors. 
 

2.2 Compiler 
 

This report implemented the Intel Parallel 
Studio® suite (release 16.0) using options for 
either host CPU or Phi coprocessor. The latter 
required code modification to identify MIC 
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attributes within a single source code. The 
extensive reporting options were used to 
investigate optimization effectiveness. 
 

2.3 Episode studied 
 

This report used the benchmark test data 
available in the CMAQ 5.1 download. This model 
episode was for July 1st, 2011, using the 
cb05e51_ae6 mechanism with 147 active species 
and 343 reactions. For day/night chemistry this 
results in 1224/1158 non-zero entries in the 
Jacobian matrix. The episode was run for a full 24 
hour scenario on a 100 X 72 California domain at 
12 Km grid spacing and 35 vertical layers for a 
total of 252,000 grid cells. This domain is some 
ten times smaller than that reported previously in 
[1]. In this report a variable number of MPI 
processes (NP) were used in the EPA version of 
CMAQ and only NP=1 in the OpenMP version. 
 
Table 2.1. CPU platforms at HiPERiSM Consulting, LLC 

Platform Node20 Node21 

Operating system SuSE Linux 13.2 SuSE Linux 13.2 

Processor Intel™ IA32 
(E5-2698v3) 

Intel™ IA32 
(E5-2698v3) 

Coprocessor 4 x Intel Phi 
7120 

4 x Intel Phi 
5110 

Peak Gflops 
(SP/DP) 

589 (SP) 589 (SP) 

Power 
consumption 

135 Watts 135 Watts 

Cores per 
processor 

16 16 

Power per core 8.44 Watts 8.44 Watts 

Processor count 2 2 

Total core count 32 32 

Clock 2.3 GHz 2.3 GHz 

Bandwidth 68 GB/sec 68 GB/sec 

Bus speed 2133 MHz 2133 MHz 

L1 cache 16x32 KB 16x32 KB 

L2 cache 16x256 MB 16x256 KB 

L3 cache 40 MB 40 MB 

 
In the following two performance metrics are 

introduced to assess thread parallel performance 
in the OpenMP modified code: 
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(a) Speedup is the gain in runtime over the 
standard U.S. EPA version, 

(b) Scaling is the gain in runtime with thread 
counts larger than 1, relative to the result 
for a single thread. 

 

3. RESULTS FOR THE STANDARD MODEL 
 

3.1 EBI solver on host 
 

This section summarizes results of the 
standard CMAQ 5.1 distribution in the testbed 
environment identified in Section 2. The 
optimization level was “-O2” because higher 
optimizations caused segmentation faults 
(segfaults) at runtime. The combination of MPI 
processes, NP = NPROW x NPCOL, are those 
shown in Table 3.1 for the EBI solver algorithm. 
 
Table 3.1. Wall clock times (in seconds) for the U.S. 
EPA EBI version of CMAQ on Intel host CPUs. 

NPROW 
X 

NPCOL 

EBI 

Value of NPCOL 

1 2 4 8 

1 10733    

2 5601    

4 3128 3103   

8 1916 1854 1858  

12  1422   

16 1309 1220 1189 1188 

24  966 931  

32 916  788 771 

 
Fig. 3.1 shows that, while the wall clock time 

declines, efficiency also decreases for higher MPI 
process counts. This is more clearly reflected in 
Fig. 3.2 which shows the parallel efficiency as a 
function of increasing MPI process count. Parallel 
efficiency is the speedup versus 1 MPI process 
divided by the the number of MPI processes. This 
is below 50% with more than 16 MPI processes 
and as low as 37% with 32 MPI processes, i.e. 
host cores are idle for as much as two thirds of the 
wall clock time. 

 

3.2 All CTM solvers on host 
 

For all available solvers the standard model 
was compiled with “-O1” because again segfaults 
occurred when higher optimizations were used for 
ROS3 or GEAR solver versions of CMAQ.  

A breakdown of where time is expended in 
CMAQ 5.1 science processes is shown in Fig. 3.3 
for GEAR, ROS3, and EBI solver algorithms. The 
relative fraction of total wall clock time is shown as 
a percentage in Fig. 3.4. 
 

 
Fig 3.1: Wall clock time from Table 3.1 versus number 
of MPI processes for the EBI solver version. 

 

 
Fig 3.2: MPI parallel efficiency versus number of MPI 
processes for the EBI solver version 

 

 
Fig 3.3: Wall clock time by science process for EBI, 
ROS3, and GEAR versions of CMAQ for NP=1. 
 

The totals of wall clock time for each version 
with various values of NP is shown in Table 3.2. 
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Obviously, wall clock time increases as the solver 
changes from EBI, to ROS3 and then GEAR. For 
example, with NP=16 the ratio in time is 1:1.5:1.9. 
However, as shown in Fig. 3.5, the parallel 
efficiency declines to ~70% when NP=16, and 
~30% when NP=64. This loss in parallel efficiency 
is due to the diminished work load per MPI 
process with a domain of 252,000 cells. When 
partitioned amongst the available number of MPI 
processes, after division into blocks of 50 cells: 
252,000/50 = 5040 blocks for NP = 1, and 5040 / 
NP thereafter, when NP > 1. 

 

 
Fig 3.4: Fraction of wall clock time (percent) by science 
process for EBI, ROS3, and GEAR versions of CMAQ 
for NP=1. Note that CHEM is not the dominant process 
for the EBI case. 

 
Table 3.2. Wall clock times (in seconds) for the U.S. 
EPA version of CMAQ on Intel host CPUs. 

NPROW 
X 

NPCOL 

CTM solver algorithm 

EBI ROS3 GEAR 

1 11881 16350 25229 

4 3338 4790 7788 

16 1164 1508 2239 

64 624 941 1180 

 

3.3 MPI performance on host 
 
Table 3.3. Wall clock times (in seconds) for the U.S. 
EPA version of CMAQ on Intel host CPUs showing 
fraction of time in MPI calls. 

NPROW 
X 

NPCOL 

Model versus MPI time 

EBI 
code 

MPI 
Ratio of MPI 

time 

2 1.08e+04 0.53e+03 4.6% 

4 1.23e+04 1.11e+03 8.2% 

8 1.31e+04 2.03e+03 13.4% 

16 1.66e+04 6.69e+03 28,7% 

32 2.56e+04 1.57e+04 38.0% 

 

 
 

 
Fig 3.5: Parallel efficiency versus number of MPI 
processes for all three solver algorithms. 
 

The VTune performance analyzer was used to 
study the MPI performance of the EPA version of 
CMAQ 5.1. Table 3.3 shows the increasing 
fraction of wall clock time spent in MPI procedures 
to demonstrate another factor in diminishing 
parallel efficiency. Fig. 3.6 shows the top MPI 
functions for the case of 32 MPI processes. 
 

 
 
Fig 3.6: VTune shows the time used by MPI for NP=32. 
 

4. OpenMP MODEL ON THE HOST 
 

4.1 EBI and ROS3 speedup versus EPA 
 

An OpenMP modification was implemented in 
the standard CMAQ version of the CTM (CHEM) 
procedure since the dominant amount of time is 
expended there for ROS3 and GEAR solvers (see 
Fig. 3.4).  

Fig. 4.1 shows timing of the OpenMP parallel 
region in the CTM for the 288 calls to CHEM in the 
EBI version for a 24 hour simulation. With 8 
threads the speedup over the standard EPA 
version ranges from 1.5 to 2.3. Using an average 
of 1.9, this suggests that since EBI expends ~28% 
of the wall clock time (see Fig. 3.4) the best overall 
speedup to be expected is ~14%, and in practice 
~11% is observed. The AERO science process 
dominates the wall clock time in the EBI algorithm 
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Fig 4.1: Speedup over EPA in 288 calls to CHEM with 
EBI for 4, 6, and 8 threads, for NP=1 MPI processes. 

 
Fig. 4.2 shows timing of the OpenMP parallel 

region in the CTM for the 288 calls to CHEM in the 
ROS3 version on the host. Since a larger fraction 
of the total time is expended in calls to CHEM in 
the ROS3 algorithm (see Fig. 3.4), the OpenMP 
speedup over the standard EPA version is greater 
than in the EBI algorithm. The average speedup 
over the standard EPA version (in 288 calls to 
CHEM) ranges from 1.3 (4 threads) to 4 (20 
threads). For a 24 hour simulation, Fig. 4.3 shows 
that the thread speedup (OMP) versus the EPA 
(EPA) version in overall wall clock time is 1.4 with 
20 threads. When compared to the EPA version 
this translates to a 29% reduction of wall clock 
time with 20 threads, and 20% is achieved with 8 
threads. The diminution of performance gain with 
higher thread counts is due to the smaller 
partitions of work per thread calculated from 5040 
blocks of cells divided amongst the number of 
available threads. Grid cells are partitioned into 
blocks of size 50 and these blocks are distributed 
to threads in a thread team in the OpenMP 
version. 
 

5. OpenMP MODEL ON THE Phi 
 

5.1 ROS3 speedup versus EPA 
 
Fig. 5.1 shows timing of the OpenMP parallel 
region in the CTM for the 288 calls to CHEM in the 
ROS3 version on the Intel Phi processor. 
 
 

 
Fig 4.2: Parallel thread speedup over EPA in 288 calls 
to CHEM with ROS3 for 1 to 20 threads on the host, for 
NP=1 MPI processes. 

 

 
Fig 4.3: Parallel thread speedup (upper curve) of the 
entire 24 hour simulation over the EPA version of ROS3 
for 1 to 24 threads on the host with NP=1 MPI process. 

 

 
Fig 5.1: Parallel thread speedup over EPA in 288 calls 
to CHEM with ROS3 for 30 to 180 threads on the Phi, 
for NP=1 MPI processes. 
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Fig 5.2: Parallel thread speedup (upper curve) of the 
entire 24 hour simulation over the EPA version of ROS3 
for 30 to 180 threads on the Phi with NP=1 MPI process. 

 
Fig. 5.2 shows that the thread speedup (OMP) 

versus the EPA (EPA) version in overall wall clock 
time is 1.35 with 180 threads. When compared to 
the EPA version this translates to a 26% reduction 
of wall clock time with 180 threads, and > 20% 
achieved with 90 threads. 
 

5.2 Performance snapshots on the Phi 
 

Real time performance is observable on the 
Intel Phi. Fig 5.3 shows the time series with the 
peaks representing two offload regions from the 
host to one Phi card. This shows utilization at 75% 
at the offload segment because only 180 of a 
possible 240 threads are active. 
 

 
 
Fig 5.3: Time series snapshot with 180 threads. 

 

 
 
Fig 5.4: Core utilization snapshot with 180 threads. 

 
For the same case, Fig. 5.4 shows that 60 

cores are active during an offload segment, with 
three threads on each core making a total of 180 
threads. Each call to the CTM has two offloads to 
the Phi corresponding respectively to the block 
reo-ordering and solve steps. Data is moved from 

CPU to the Phi with each offload: 269 MB for the 
reorder step, and 416 MB for the solve step.  
  

6. NUMERICAL AND CODE ISSUES 
 

6.1 Norms in the chemistry solver 
 

To understand numerical accuracy metrics are 
used to show precision after the decomposition 
and solve steps of the sparse linear system Ax = 
y. Such metrics are easily monitored in the 
FSparse algorithm with an option to calculate 
several types of norms including |A|, |x|, and |Ax-
y|, as summarized in Table 6.1. The length of the 
vector (Ax-y, or x) is the number of species. The 
“inf” norm selects the maximum value of each 
vector, Ax-y (residual), or x (solution), respectively. 
The statistic of Table 6.1 is then computed as 
either the mean over all 50 cells in a block, or 
sampled for a specific cell number in the block. 

 
Table 6.1. Metric for chemistry solver of CMAQ 4.7.1 
with ROS3 for each block of the entire domain. 

value metric 

norm 
Statistic (calculated 

over all cells in a block) 

Residual norm(Ax – y, inf) 
mean, 

standard deviation,  
coefficient of variation. 

Solution norm(x, inf) mean 

 
In the FSparse method the residual remains 

negligibly small in the FSparse algorithm for the 
chemistry solver. 
 

6.2 Comparing concentration values 
 

Any discrepancy between predictions of the 
JSparse [3] and FSparse [1] algorithms in the two 
methods is explained by the way precision is 
treated in each. The Chemistry solver uses double 
precision arithmetic but accepts some input data 
from single precision variables (temperature, 
pressure, photolysis rates, reaction rates, etc.). 
Any loss in precision is amplified as the solution 
progresses in the three Rosenbrock solve stages. 
Therefore all expressions in FSparse are 
performed in double precision. The acid test is to 
compare the computed concentration values for 
selected species as predicted by the EPA (using 
JSparse) and the thread parallel version (using 
FSparse). Careful inspection of these 
concentration values for selected species (O3, 
NOx, etc) for the entire domain and all 24 time 
steps showed differences within the RMS 
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tolerance controlling convergence in the ROS3 
algorithm. 
 

6.3 Code issues uncovered in this study 
 

Several code issues were uncovered during 
this implementation using the CMAQ 5.1 download 
of the original EPA version from the CMAS site. 
These included the following: 

 

 In ~ /models/JPROC/jproc_table/ the 

files srband.f and intavg.f have interface 

errors. 

 In bldit.cctm script the preprocessor uses a 

reserved name in “set PAR=( -Dparallel 

)” that corrupts OpenMP directives. 

 More than 60,000 compiler warnings such as 
“This name has not been given an 

explicit type” 

 Warning messages of the type “Global name 

too long” 

 Warning messages of the type “Source line 

truncated” 

 Warning messages of the type “A dummy 
argument with an explicit 

INTENT(OUT) declaration is not 

given an explicit value” 
 

To avoid termination of the compilation the 
warnings were disabled with the compiler option 

choice “-warn all,nodeclarations,nounused” 

while others required source code and script 
modifications. It was also found that higher 
optimization such as -O2 and –O3 produced 
executables that resulted in segfaults. These could 
be related to the choice of other compiler options, 
the version of the compiler used, and the platform. 
 

7. LESSONS LEARNED 
 

7.1 Benefits of the FSparse method 
 

Comparing runtime performance for CMAQ 
5.1 in the new OpenMP parallel version with the 
U.S. EPA release showed benefits such as: 

 A speedup ~1.4 for the ROS3 algorithm 
on either multi-core host or many-core 
MIC processors thereby bring the wall 
clock time comparable to that of the EBI 
version (cf Table 3.2). 

 A single source code version of the CTM. 
 Thread parallel efficiency that was 

comparable to that of MPI processing. 
 Hybrid MPI+OpenMP algorithms that offer 

more on-node compute intensity as the 

number of available threads rises to 100’s 
and beyond. 

 Numerical values of predicted 
concentration that are within the error 
tolerance inherent in the algorithms. 

 

7.2 Next steps 
 

A continuation of this work would include: 
 Removal of blocking of cells and 

application of the CTM to individual cells 
to increase the accuracy of the model. 

 Extension of the thread based model to 
the Gear solver for CMAQ. 

 Exploring a relaxation of the chemistry 
time step convergence error criterion to 
further reduce runtime. 

 Implementing further compiler and 
implementation tuning opportunities. 

 A port to the 2nd generation Intel Phi 
processor 

 

8. CONCLUSIONS 
 

This report has described an analysis of 
CMAQ 5.1 behavior in the standard U.S. EPA 
release and a new thread parallel version of 
CMAQ for the Rosenbrock solver. Opportunities 
exist for speedup with an increasing number of 
parallel threads that reaches the range 1.4 over 
the standard CMAQ release for the Rosenbrock 
solver. 

Further opportunities remain for thread 
parallelism in other parts of the CMAQ model 
outside of the solver and work in this direction 
continues at HiPERiSM Consulting, LLC. The new 
FSparse version of ROS3 offers layers of 
parallelism not available in the standard U.S. EPA 
release and is portable across multi- and many-
core hardware and compilers that support thread 
parallelism. 
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