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1.  INTRODUCTION 
 

HiPERiSM Consulting, LLC, has a mission to 
develop (or enhance) software and improve 
performance on current and future computers for 
legacy Air Quality Models (AQM). One such model 
is the U.S. EPA's AERMOD developed by the U.S. 
EPA Office of Air Quality Planning and Standards 
(OAQPS), Emissions Monitoring and Analysis 
Division (EMAD), at the U.S. EPA in Research 
Triangle Park, North Carolina, U.S.A [1]. The 
purpose of this presentation is to examine the 
code structure with a view to the potential for a 
thread-parallel implementation and to provide 
quantitative evidence of parallel scaling in a simple 
task farming experiment. While no code 
modification has been performed the results with 
the serial version of AERMOD-HPC suggest good 
potential for performance enhancement on multi-
core and many-core processors such as the Intel 
Xeon and Intel Xeon Phi processors, respectively. 

 
2. TEST BED ENVIRONMENT 

 
2.1 Hardware 

 
The hardware systems chosen were the 

platforms at HiPERiSM Consulting, LLC, shown in 
Table 2.1. Each of the two nodes host two Intel 
E5v3 CPUs with 16 cores each. In addition, each 
node has four 1st generation Intel Phi co-processor 
many integrated cores (MIC) cards with 60 and 59 
cores for the respective models. With four MIC 
cards per node, and 4 threads per MIC core, the 
total available thread count is 960 and 944, for the 
respective nodes. 
 

2.2 Episodes studied 
 

Two benchmarks are used in this analysis 
(Case 2 and Case 5 from [2]). Case 5 has 1001 
sources and 916 receptors with as many as 8760 
meteorological hours and is the longest running 
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benchmark. Case 2, a much shorter example, is 
used for profiling. 
 
Table 2.1. CPU platforms at HiPERiSM Consulting, LLC 

Platform Node20 Node21 

Operating system SuSE Linux 13.2 SuSE Linux 13.2 

Processor Intel™ IA32 
(E5-2698v3) 

Intel™ IA32 
(E5-2698v3) 

Coprocessor 4 x Intel Phi 
7120 

4 x Intel Phi 
5110 

Peak Gflops 
(SP/DP) 

589 (SP) 589 (SP) 

Power 
consumption 

135 Watts 135 Watts 

Cores per 
processor 

16 16 

Power per core 8.44 Watts 8.44 Watts 

Processor count 2 2 

Total core count 32 32 

Clock 2.3 GHz 2.3 GHz 

Bandwidth 68 GB/sec 68 GB/sec 

Bus speed 2133 MHz 2133 MHz 

L1 cache 16x32 KB 16x32 KB 

L2 cache 16x256 MB 16x256 KB 

L3 cache 40 MB 40 MB 

 
 
3. BENCHMARKS 
 

The benchmark of Case 5, with 916 receptors, 
was partitioned into separate (independent) tasks 
by distributing the number of receptors into 
separate AERMOD input data streams. This 
partitioning scheme is shown in Table 3.1. The 
resulting number of tasks were then launched 
concurrently as serial AERMOD runs on the 
respective processor and coprocessor targets. 
Note that node20 has two CPUs with 16 cores 
each (together denoted as “host”), whereas the 
there are four attached Phi cards (denoted as Phi, 
or MIC) with a total of 240 cores available. 
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Table 3.1. Task separation based on available core count 

Number of 
tasks 

Number of receptors 
per task 

Target processor 
and MIC count 

1 916 Host and 1x Phi 

30 ~ 31 Host and 1 x Phi 

60 ~15 1 x Phi  

120 ~8  2 xPhi 

240 ~4 4 x Phi 

 
A detailed discussion of results is presented in 

Section 5 after the examination of the AERMOD 
code to demonstrate the motivation for these 
benchmark experiments. 

 
4. CODE EXAMINATION 
  

4.1 AERMOD memory demand 
 

The most significant beneficial property of the 
serial version of AERMOD is the small amount of 
memory required at runtime. This suggest that 
many multiple tasks could be spawned to run 
concurrently on the same platform without 
seriously exhausting memory capacity. This is 
attractive because 1st generation Intel Phi 
processors are limited to 16 Gigabytes of memory, 
and as many as 240 separate AERMOD tasks 
may execute on a single 60 core MIC processor. 
 

4.2 Serial code in AERMOD 
 

AERMOD is a serial code that has a heavy 
memory foot print [2]. The total number of memory 
instructions is voluminous and the load balance of 
memory instructions per floating point operation is 
~20. As a memory bound model, a high TLB 
instruction cache miss rate leads to processor 
pipeline stalls that leave the arithmetic processor 
waiting on data. This is due in part to numerous 
procedure calls (of short duration) and voluminous 
miss-predicted branch instruction rates. None of 
these characteristics are corrected in this exercise, 
but an examination with the Intel VTune profile 
tools helps to identify hot-spots as a guide to 
where performance improvement work could 
begin. Examples are shown in Figs. 1 and 2 for 
Case 2 where subroutines ANYAVG, IBLVAL, and 
SIGZ account for nearly half the runtime. 
 

 
 
Fig. 1 A VTune profile of Case 2 shows that some 49% 
of the total time in spent in three procedures: ANYAVG, 
IBLVAL, and SIGZ. 

 

4.3 Source and receptor loops 
 

The AERMOD model does have implicit loops 
that could be parallelized. There are 27 source 
loops and 38 receptor loops that are typically 
nested inside the source loops. Any compute 
intensive receptor loop is a target for thread 
parallelization and would involve a less complex 
level of effort than attempting to parallelize on a 
source loop that contains it. 
 

 
 
Fig. 2 The example of procedure ANYAVG shows most 
time is spent in application of the trapezoidal rule. 

 
This structure is repeated in several places 

depending on the source type. The receptor loop 
in PCALC (for point sources) is such a candidate. 
However, thread parallelization over the receptor 
loop is complicated by several code structure 
features discussed below. 
 
 



Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016 

 3 

4.4 Call tree in the receptor loop 
 

The call tree structure in AERMOD inside 
potential parallel regions, such as the receptor 
loop in PCALC, is complex. This is shown in Table 
4.1 where Those procedures with a “yes” in the 
last column contain deeper procedure calls. In fact 
the call tree in the PCALC receptor loop is of the 
order of four levels deep. 

 
Table 4.1. Call tree in PCALC receptor loop 

Procedure 
called 

Module where 
located  

Contains further 
calls 

XYDIST calc2.f no 

AERCALC cacl1.f yes 

MEANDR calc2.f no 

PRMCALC calc1.f yes 

GAMCALC calc1.f yes 

EV_SUMVAL evcalc.f no 

SUMVAL calc2,f no 

EVALCK calc2.f no 

 

4.5 Variables in the receptor loop 
 

Nearly all variables in the call tree contained 
by the receptor loop are global while a few are 
local. If the receptor loop is to be modified for 
thread parallel form, then all variables contained 
therein, for caller and callee, need to be classified 
as either shared of private to avoid memory 
corruption when multiple threads are active in a 
thread team.  
 

4.6 Variable categories for the Phi 
 

In addition to the thread parallel requirements, 
variables contained in the parallel region need to 
be listed for offload to the Phi. There are three 
categories to list in separate declarations: 

“in” for copy from host to MIC, 
“inout” for copy back to host from MIC, 
“nocopy” local to the MIC. 

 

4.7 I/O operations in AERMOD 
 

The AERMOD code contains numerous 
formatted I/O including some 120 read statements 
and 1760 write statements. Those that are inside 
potential thread parallel regions are best hoisted 
outside it. This would require some memory for 
storage of data intended for deferred output 
outside the parallel region. However, this 
approach would enhance performance by avoiding 
thread synchronization in the parallel region. 

4.8 Level of effort to parallelize 
 

A thread parallel version of AERMOD is 
possible, in principle, by parallelization of the 
receptor loop. However, the code features 
itemized above imply some considerable level of 
effort to create thread parallel regions. This implies 
significant code modification and debug effort.  
 

 
5. A TASK FARMING EXPERIMENT 
 

5.1 AERMOD performance 
 

AERMOD runtime results are shown in Figs. 3 
and 4. The population of cores on the host is 
limited at most to 32, so that 30 tasks in this case 
corresponds to ~31 receptors in each of 30 tasks 
on either host or Phi processors. The remainder 
correspond to the tasks listed in Table 3.1. For the 
Phi case 60 tasks fit one Phi processor, 120 two 
Phi processors and 240 on four Phi processors. 
The partitioning could be continued with 480 tasks 
across the two nodes of Table 2.1, but this was 
not done in this report. The longest runtimes are 
for the 1-core result on either processor with a 
ratio of ~460 for Phi versus host. From Fig. 3 it is 
seen that scaling with 30 tasks versus 1 task on 
the host is ~16, and ~32 on the MIC. A result that 
is expected since the MIC is designed to utilize 
many cores and threads. 
 

 
Fig 3. This shows the log of the wall clock time (in 
minutes) versus the task count on host and 1, 2, and 4 
Intel MIC co-processors for Case 5 partitioned by 
receptors into 1, 30, 60, 120, and 240, separate 
AERMOD runs as in Table 3.1. 
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Fig.4.This shows the results of Fig. 3 on a log-log scale 
to demonstrate the strong scaling as task numbers 
multiply and compares host and Phi processor times. 

 

 
Fig.6.This shows the ratio of Phi times from Fig.3 
divided by the best host time corresponding to 30 host 
cores. The horizontal scale is the task count on the Phi 
processor(s). 

 

5.2 AERMOD performance on MICs 
 

The runtimes shown in Figs 3 and 4 are based 
on averages in the case of multiple tasks. There is 
variability in runtimes when receptors are 
partitioned into separate tasks. The individual 
runtimes for the example of the 240 tasks on the 
Phi processor corresponding to 60, 120, and 240 
cores are shown in Fig. 5. The separate curves 
correspond to 1, 2, and 4 Phi processors, 
respectively. The horizontal axis counts the tasks.  
 

 
Fig. 5. For the example of 240 separate tasks (Table 
3.1), this shows the time (in minutes) versus each of 
240 separate AERMOD tasks. The separate curves 
correspond to utilization of 60 cores (1 Phi card), 120 
cores (2 Phi cards), and 240 cores (4 Phi cards). 

 
For more than one Phi processor the task 

times are concatenated with the division at the 
cusp(s). The rising trend on each Phi card is due, 
in part, to earlier tasks receiving more resources 
on each coprocessor than later ones. Also the 
differences in receptor data is a contributing factor 
with some tasks completing before others. 
 

5.3 Comparing host and MICs 
 

Inspection of Fig.4 shows that a 60 task 
partition of Case 5 on one Phi co-processor out-
performs a single core task on the host. However, 
it also shows that the Phi times for any task 
collection do not out-perform those of the host with 
30 tasks. Nevertheless, the 240 task result on the 
Phi is less than 4 times longer than the 30-core 
result on the host as shown in the ratio of Fig.6. 

 
Several factors need to be taken into account 

in this experiment to understand this outcome: 
 

 Each task is a complete AERMOD 
execution including replicated input and 
output operations 

 I/O on the Phi requires buffering of all 
read/write operations over a PCI bus to the 
host because that is where the hard drives 
reside 

 
In a thread parallel version of the receptor 

loop(s) of AERMOD both of these impediments 
would be ameliorated. Furthermore, since each 
core on the Phi supports four threads, additional 
scaling could be uncovered.  
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As a footnote it is worth noting that these 

experiments have been conducted with the first 
generation Phi co-processor. The second 
generation Phi will be directly coupled to the global 
memory and storage device so that the I/O 
buffering over a PCI bus will be absent. 

 
6. CONCLUSIONS 
 

Quantitative evidence of parallel scaling with 
AERMOD in a simple task farming experiment was 
demonstrated. While no source code modification 
was performed, the results with the serial version 
of AERMOD suggest good potential for 
performance enhancement on platforms with 
multiple cores. These results motivate an 
exploration of how best to modify AERMOD for 
parallel performance. 
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