
Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

 1

EXPLORING PARALLEL PROCESSING OPPORTUNITIES IN AERMOD

George Delic *

HiPERiSM Consulting, LLC, Durham, NC, USA

1. INTRODUCTION

HiPERiSM Consulting, LLC, has a mission to
develop (or enhance) software and improve
performance on current and future computers for
legacy Air Quality Models (AQM). One such model
is the U.S. EPA's AERMOD developed by the U.S.
EPA Office of Air Quality Planning and Standards
(OAQPS), Emissions Monitoring and Analysis
Division (EMAD), at the U.S. EPA in Research
Triangle Park, North Carolina, U.S.A [1]. The
purpose of this presentation is to examine the
code structure with a view to the potential for a
thread-parallel implementation and to provide
quantitative evidence of parallel scaling in a simple
task farming experiment. While no code
modification has been performed the results with
the serial version of AERMOD-HPC suggest good
potential for performance enhancement on multi-
core and many-core processors such as the Intel
Xeon and Intel Xeon Phi processors, respectively.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the

platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Each of the two nodes host two Intel
E5v3 CPUs with 16 cores each. In addition, each
node has four 1st generation Intel Phi co-processor
many integrated cores (MIC) cards with 60 and 59
cores for the respective models. With four MIC
cards per node, and 4 threads per MIC core, the
total available thread count is 960 and 944, for the
respective nodes.

2.2 Episodes studied

Two benchmarks are used in this analysis
(Case 2 and Case 5 from [2]). Case 5 has 1001
sources and 916 receptors with as many as 8760
meteorological hours and is the longest running

* Corresponding author: George Delic,

george@hiperism.com

benchmark. Case 2, a much shorter example, is
used for profiling.

Table 2.1. CPU platforms at HiPERiSM Consulting, LLC

Platform Node20 Node21

Operating system SuSE Linux 13.2 SuSE Linux 13.2

Processor Intel™ IA32
(E5-2698v3)

Intel™ IA32
(E5-2698v3)

Coprocessor 4 x Intel Phi
7120

4 x Intel Phi
5110

Peak Gflops
(SP/DP)

589 (SP) 589 (SP)

Power
consumption

135 Watts 135 Watts

Cores per
processor

16 16

Power per core 8.44 Watts 8.44 Watts

Processor count 2 2

Total core count 32 32

Clock 2.3 GHz 2.3 GHz

Bandwidth 68 GB/sec 68 GB/sec

Bus speed 2133 MHz 2133 MHz

L1 cache 16x32 KB 16x32 KB

L2 cache 16x256 MB 16x256 KB

L3 cache 40 MB 40 MB

3. BENCHMARKS

The benchmark of Case 5, with 916 receptors,
was partitioned into separate (independent) tasks
by distributing the number of receptors into
separate AERMOD input data streams. This
partitioning scheme is shown in Table 3.1. The
resulting number of tasks were then launched
concurrently as serial AERMOD runs on the
respective processor and coprocessor targets.
Note that node20 has two CPUs with 16 cores
each (together denoted as “host”), whereas the
there are four attached Phi cards (denoted as Phi,
or MIC) with a total of 240 cores available.

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

 2

Table 3.1. Task separation based on available core count

Number of
tasks

Number of receptors
per task

Target processor
and MIC count

1 916 Host and 1x Phi

30 ~ 31 Host and 1 x Phi

60 ~15 1 x Phi

120 ~8 2 xPhi

240 ~4 4 x Phi

A detailed discussion of results is presented in

Section 5 after the examination of the AERMOD
code to demonstrate the motivation for these
benchmark experiments.

4. CODE EXAMINATION

4.1 AERMOD memory demand

The most significant beneficial property of the
serial version of AERMOD is the small amount of
memory required at runtime. This suggest that
many multiple tasks could be spawned to run
concurrently on the same platform without
seriously exhausting memory capacity. This is
attractive because 1st generation Intel Phi
processors are limited to 16 Gigabytes of memory,
and as many as 240 separate AERMOD tasks
may execute on a single 60 core MIC processor.

4.2 Serial code in AERMOD

AERMOD is a serial code that has a heavy
memory foot print [2]. The total number of memory
instructions is voluminous and the load balance of
memory instructions per floating point operation is
~20. As a memory bound model, a high TLB
instruction cache miss rate leads to processor
pipeline stalls that leave the arithmetic processor
waiting on data. This is due in part to numerous
procedure calls (of short duration) and voluminous
miss-predicted branch instruction rates. None of
these characteristics are corrected in this exercise,
but an examination with the Intel VTune profile
tools helps to identify hot-spots as a guide to
where performance improvement work could
begin. Examples are shown in Figs. 1 and 2 for
Case 2 where subroutines ANYAVG, IBLVAL, and
SIGZ account for nearly half the runtime.

Fig. 1 A VTune profile of Case 2 shows that some 49%
of the total time in spent in three procedures: ANYAVG,
IBLVAL, and SIGZ.

4.3 Source and receptor loops

The AERMOD model does have implicit loops
that could be parallelized. There are 27 source
loops and 38 receptor loops that are typically
nested inside the source loops. Any compute
intensive receptor loop is a target for thread
parallelization and would involve a less complex
level of effort than attempting to parallelize on a
source loop that contains it.

Fig. 2 The example of procedure ANYAVG shows most
time is spent in application of the trapezoidal rule.

This structure is repeated in several places

depending on the source type. The receptor loop
in PCALC (for point sources) is such a candidate.
However, thread parallelization over the receptor
loop is complicated by several code structure
features discussed below.

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

 3

4.4 Call tree in the receptor loop

The call tree structure in AERMOD inside
potential parallel regions, such as the receptor
loop in PCALC, is complex. This is shown in Table
4.1 where Those procedures with a “yes” in the
last column contain deeper procedure calls. In fact
the call tree in the PCALC receptor loop is of the
order of four levels deep.

Table 4.1. Call tree in PCALC receptor loop

Procedure
called

Module where
located

Contains further
calls

XYDIST calc2.f no

AERCALC cacl1.f yes

MEANDR calc2.f no

PRMCALC calc1.f yes

GAMCALC calc1.f yes

EV_SUMVAL evcalc.f no

SUMVAL calc2,f no

EVALCK calc2.f no

4.5 Variables in the receptor loop

Nearly all variables in the call tree contained
by the receptor loop are global while a few are
local. If the receptor loop is to be modified for
thread parallel form, then all variables contained
therein, for caller and callee, need to be classified
as either shared of private to avoid memory
corruption when multiple threads are active in a
thread team.

4.6 Variable categories for the Phi

In addition to the thread parallel requirements,
variables contained in the parallel region need to
be listed for offload to the Phi. There are three
categories to list in separate declarations:

“in” for copy from host to MIC,
“inout” for copy back to host from MIC,
“nocopy” local to the MIC.

4.7 I/O operations in AERMOD

The AERMOD code contains numerous
formatted I/O including some 120 read statements
and 1760 write statements. Those that are inside
potential thread parallel regions are best hoisted
outside it. This would require some memory for
storage of data intended for deferred output
outside the parallel region. However, this
approach would enhance performance by avoiding
thread synchronization in the parallel region.

4.8 Level of effort to parallelize

A thread parallel version of AERMOD is
possible, in principle, by parallelization of the
receptor loop. However, the code features
itemized above imply some considerable level of
effort to create thread parallel regions. This implies
significant code modification and debug effort.

5. A TASK FARMING EXPERIMENT

5.1 AERMOD performance

AERMOD runtime results are shown in Figs. 3
and 4. The population of cores on the host is
limited at most to 32, so that 30 tasks in this case
corresponds to ~31 receptors in each of 30 tasks
on either host or Phi processors. The remainder
correspond to the tasks listed in Table 3.1. For the
Phi case 60 tasks fit one Phi processor, 120 two
Phi processors and 240 on four Phi processors.
The partitioning could be continued with 480 tasks
across the two nodes of Table 2.1, but this was
not done in this report. The longest runtimes are
for the 1-core result on either processor with a
ratio of ~460 for Phi versus host. From Fig. 3 it is
seen that scaling with 30 tasks versus 1 task on
the host is ~16, and ~32 on the MIC. A result that
is expected since the MIC is designed to utilize
many cores and threads.

Fig 3. This shows the log of the wall clock time (in
minutes) versus the task count on host and 1, 2, and 4
Intel MIC co-processors for Case 5 partitioned by
receptors into 1, 30, 60, 120, and 240, separate
AERMOD runs as in Table 3.1.

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

 4

Fig.4.This shows the results of Fig. 3 on a log-log scale
to demonstrate the strong scaling as task numbers
multiply and compares host and Phi processor times.

Fig.6.This shows the ratio of Phi times from Fig.3
divided by the best host time corresponding to 30 host
cores. The horizontal scale is the task count on the Phi
processor(s).

5.2 AERMOD performance on MICs

The runtimes shown in Figs 3 and 4 are based
on averages in the case of multiple tasks. There is
variability in runtimes when receptors are
partitioned into separate tasks. The individual
runtimes for the example of the 240 tasks on the
Phi processor corresponding to 60, 120, and 240
cores are shown in Fig. 5. The separate curves
correspond to 1, 2, and 4 Phi processors,
respectively. The horizontal axis counts the tasks.

Fig. 5. For the example of 240 separate tasks (Table
3.1), this shows the time (in minutes) versus each of
240 separate AERMOD tasks. The separate curves
correspond to utilization of 60 cores (1 Phi card), 120
cores (2 Phi cards), and 240 cores (4 Phi cards).

For more than one Phi processor the task

times are concatenated with the division at the
cusp(s). The rising trend on each Phi card is due,
in part, to earlier tasks receiving more resources
on each coprocessor than later ones. Also the
differences in receptor data is a contributing factor
with some tasks completing before others.

5.3 Comparing host and MICs

Inspection of Fig.4 shows that a 60 task
partition of Case 5 on one Phi co-processor out-
performs a single core task on the host. However,
it also shows that the Phi times for any task
collection do not out-perform those of the host with
30 tasks. Nevertheless, the 240 task result on the
Phi is less than 4 times longer than the 30-core
result on the host as shown in the ratio of Fig.6.

Several factors need to be taken into account

in this experiment to understand this outcome:

 Each task is a complete AERMOD
execution including replicated input and
output operations

 I/O on the Phi requires buffering of all
read/write operations over a PCI bus to the
host because that is where the hard drives
reside

In a thread parallel version of the receptor

loop(s) of AERMOD both of these impediments
would be ameliorated. Furthermore, since each
core on the Phi supports four threads, additional
scaling could be uncovered.

Presented at the 15th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2016

 5

As a footnote it is worth noting that these

experiments have been conducted with the first
generation Phi co-processor. The second
generation Phi will be directly coupled to the global
memory and storage device so that the I/O
buffering over a PCI bus will be absent.

6. CONCLUSIONS

Quantitative evidence of parallel scaling with
AERMOD in a simple task farming experiment was
demonstrated. While no source code modification
was performed, the results with the serial version
of AERMOD suggest good potential for
performance enhancement on platforms with
multiple cores. These results motivate an
exploration of how best to modify AERMOD for
parallel performance.

References

[1] AERMOD is available at U.S. EPA, Technology
Transfer Network, Support Center for Regulatory
Air Models http://www.epa.gov/scram/.

[2] G. Delic and A.R. Srackangast, 6th Annual
CMAS conference, Chapel Hill, NC, October 1-3
2007.

http://www.epa.gov/scram/

