Using Optimal Interpolation to Assimilate AirNOW Surface Measurement and MODIS AOD into CMAQ for July 2011

Youhua Tang1,2 (youhua.tang@noaa.gov), Tianfeng Chai1,2, Piun Lee1, Daniel Tong1,2,3, Hyun-Cheol Kim1,2, and Weiwei Chen1,4

1. NOAA Air Resources Laboratory, 5830 University Research Court, College Park, Maryland, MD 20740
2. Cooperative Institute for Climate and Satellites, University of Maryland, College Park, Maryland, MD 20740
3. Center for Spatial Information Science and Systems, George Mason University, Fairfax, Virginia, VA 2203
4. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China

Summary

- The optimal interpolation (OI) assimilation combining AirNow surface measurements and MODIS AOD (Terra and Aqua) yielded significantly better results than the base case, especially on reducing mean biases, and the OI technique is sensitive to its uncertainty setting.
- The assimilation relies on the temporally and spatially available measurement data, which is always limited.
- Some of our assumptions, such as the aerosol speciation ratios and vertical distribution, need to be further verified.

Cases of Studies Assimilation Times Settings of Uncertainties

- **OI1 (7x7 OI)**
 - 00Z, 06Z, 12Z, 18Z for AirNow data
 - 18Z for MODIS AOD (+/- one hour)
 - 0.6 for modeled aerosols
 - 0.4 for modeled O3

- **OI2 (7x7 OI)**
 - 00Z, 06Z, 12Z, 14Z, 17Z, 19Z for AirNow
 - 17Z and 19Z for MODIS (+/- two hours)
 - 2.0 for modeled aerosols
 - 0.4 for modeled O3

- **OI3 (7x7 OI)**
 - 00Z, 06Z, 12Z, 14Z for AirNow
 - 17Z and 19Z for MODIS (+/- two hours)
 - Dynamic uncertainties up to 5.0 for modeled PM2.5, and up to 0.6 for modeled O3.

- **OI4 (11x11 OI)**
 - 00Z, 06Z, 12Z, 14Z, 17Z, 19Z for AirNow
 - 17Z and 19Z for MODIS (+/- two hours)
 - Dynamic uncertainties up to 10.0 for modeled PM2.5, and up to 1.0 for modeled O3.

CMAQ base run setting (v5.0.2 cb05tucl_ae5)

- Driven by WRF-ARW 12km CONUS, 42 layers up to 50hPa
- 2008 anthropogenic emission inventory projected to 2011
- NOAA HMS (hazard mapping system) fire emission with Bluesky algorithm
- GOES cloud fraction adjustment provided by U. of Alabama at Huntsville
- RAQMS lateral boundary condition every 6 hours.

Hourly Statistic Results over CONUS 12Z, 07/06/2011- 12Z, 07/07/2011

<table>
<thead>
<tr>
<th>Cases of Studies</th>
<th>O3 (ppbV)</th>
<th>PM2.5 (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>R=0.53</td>
<td>MB=2.54</td>
</tr>
<tr>
<td>OI</td>
<td>R=0.56</td>
<td>MB=2.36</td>
</tr>
<tr>
<td>OI1</td>
<td>R=0.58</td>
<td>MB=0.43</td>
</tr>
<tr>
<td>OI2</td>
<td>R=0.61</td>
<td>MB=0.14</td>
</tr>
<tr>
<td>OI3</td>
<td>R=0.58</td>
<td>MB=0.59</td>
</tr>
<tr>
<td>OI4</td>
<td>R=0.60</td>
<td>MB=0.21</td>
</tr>
</tbody>
</table>

Cases of Studies Assimilation Times Settings of Uncertainties

- **OI1 (7x7 OI)**
 - 00Z, 06Z, 12Z, 18Z for AirNow data
 - 18Z for MODIS AOD (+/- one hour)
 - 0.6 for modeled aerosols
 - 0.4 for modeled O3

- **OI2 (7x7 OI)**
 - 00Z, 06Z, 12Z, 14Z, 17Z, 19Z for AirNow
 - 17Z and 19Z for MODIS (+/- two hours)
 - 2.0 for modeled aerosols
 - 0.4 for modeled O3

- **OI3 (7x7 OI)**
 - 00Z, 06Z, 12Z, 14Z for AirNow
 - 17Z and 19Z for MODIS (+/- two hours)
 - Dynamic uncertainties up to 5.0 for modeled PM2.5, and up to 0.6 for modeled O3.

- **OI4 (11x11 OI)**
 - 00Z, 06Z, 12Z, 14Z, 17Z, 19Z for AirNow
 - 17Z and 19Z for MODIS (+/- two hours)
 - Dynamic uncertainties up to 10.0 for modeled PM2.5, and up to 1.0 for modeled O3.

Hourly Statistic Results over Southeast 12Z, 07/06/2011- 12Z, 07/07/2011

<table>
<thead>
<tr>
<th>Cases of Studies</th>
<th>O3 (ppbV)</th>
<th>PM2.5 (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>R=0.55</td>
<td>MB=0.22</td>
</tr>
<tr>
<td>OI</td>
<td>R=0.58</td>
<td>MB=0.43</td>
</tr>
<tr>
<td>OI1</td>
<td>R=0.61</td>
<td>MB=0.14</td>
</tr>
<tr>
<td>OI2</td>
<td>R=0.58</td>
<td>MB=0.85</td>
</tr>
<tr>
<td>OI3</td>
<td>R=0.60</td>
<td>MB=0.59</td>
</tr>
<tr>
<td>OI4</td>
<td>R=0.56</td>
<td>MB=0.21</td>
</tr>
</tbody>
</table>

The OI assimilation help reduce the PM2.5 daytime underprediction, but sometimes causes the nighttime overprediction. Its impact on ozone is not as significant as that on PM2.5 due to the relatively small ozone biases in the base case.