Abstract

Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of airborne allergenic pollen and potentially increase occurrence of allergic diseases. A comprehensive prognostic modeling system, combining climate models and anthropogenic and biogenic emission models with an expanded version of the Community Multiscale Air Quality (CMAQ) Model has been developed to support research studies of the impact of climate change on Airway Allergic Diseases (AAD). The present work focuses on the mechanistic pollen emission module and the transport module, and their application to model the spatiotemporal distributions of allergenic pollen from representative trees, weeds and grasses. The model system was used to simulate the allergenic pollen season timing and airborne levels of representative trees, weeds and grasses for multiple historical and future years. The predicted mean start dates and season lengths for birch, oak, ragweed, mugwort and grass pollen season in 1994-2010 are mostly within 0 to 5 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous United States (CONUS). Simulated airborne pollen levels are consistent with the observations for oak and mugwort, but do not match observations well for birch, mugwort and grass at all locations. Vertical profiles of pollen concentrations can match well with the observed qualitative profiles reported in the literature. Process analysis indicates that emissions, dry deposition and vertical diffusion dominate the processes determining airborne pollen concentrations most, and that wet removal (cloud process) plays an important role during rain events. The spatially resolved maps for simulated onset, duration and airborne levels of allergenic pollen seasons in the CONUS are consistent with the long term observations. Changes of pollen season timing and airborne levels depend on latitude, and vary in different climate regions.

Background

Climate change impacts pollen dynamics, affecting important metrics such as: annual total count, maximum and mean daily count, start date of season and season length. These indices are useful in characterizing pollen impacts to allergic airway diseases (AAD) and to processes involving genetic manipulation of plants. Birch (Betula), Oak (Quercus), Mugwort (Ambrosia), Ragweed (Artemisia) and Grass (Poaceae) have been selected as representative species in the present case study.

Methods

The integrated system presented here links climate modeling with emissions, transport, and exposure modeling (shown on right). The emissions and transport of pollen were simulated via the combined application of the WRF model, the SMOKE model and a customized version of the CMAQ model. SMOKE 4.7.1, contiguous US 50x50 km, 34 Layers. Northeastern US 12x12 km, 34 Layers.

Evaluation

Follow Methods in 2013. Frank et al. 2013. Zhang et al. 2013. The integrated system presented here links climate modeling with emissions, transport, and exposure modeling (shown on right). The emissions and transport of pollen were simulated via the combined application of the WRF model, the SMOKE model and a customized version of the CMAQ model. SMOKE 4.7.1, contiguous US 50x50 km, 34 Layers. Northeastern US 12x12 km, 34 Layers.

Transport

Emission

Evaluation

Process Analyses

Boundary Conditions

Vertical Profiles

Climate Change Impacts on Allergenic Pollen

References

Acknowledgments: This work has been funded in part by USEPA under Star Grant EPA-RO-82545701-0 (Climate Change and Allergic Airways Diseases) to Rutgers University, and by the NIEHS sponsored Center for Environmental Exposure and Disease (CEEDS) Grant #P01 ES015036. The views expressed in this paper do not represent the views of the funding agencies.