Heterogeneous HONO sources and ozone chemistry in Houston, Texas

William Vizuete, Evan Couzo¹, Prakash Karamchandani², Greg Yarwood², Jochen Stutz³, and Barry Lefer⁴

www.unc.edu/~vizuete

@williamvizuete

¹MIT, ²ENVIRON, ³UCLA, ⁴UH

Nitrous acid is an important radical source.

• Early morning photolysis of HONO initiates radical formation before major sources of radicals (HCHO and O_3 photolysis) kicks in.

• Field campaigns and lab experiments point to new sources (direct emissions and heterogeneous chemistry).

• Regulatory models do not include these new HONO sources and under predict HONO concentrations.

• Measurements show a strong vertical HONO gradient with higher concentrations near the ground.

Heterogeneous chemistry is missing from models.

Homogeneous (gas phase only)Heterogeneous (gas & surfaces)
$$NO + OH \longrightarrow HONO$$
 $HNO_{3ads} + hv \longrightarrow NO_{2ads} + OH$ $NO + NO_2 + H_2O \longrightarrow HONO$ $2NO_{2ads} + H_2O_{ads} \rightarrow HONO_{ads} + HNO_{3ads}$ $HA + hv \longrightarrow A_{red} + X$ $A_{red} + X \longrightarrow A^{`}$ $A_{red} + NO_2 \longrightarrow A^{``} + HONO$

Heterogeneous chemistry has been parameterized using S/V with some success. But this is not a physically accurate description of the real environment.

Dry deposition is no longer a total loss process. This is a totally new way of modeling heterogeneous chemistry in air quality models.

New modeling episode aligns with SHARP measurements.

• Alpine Geophysics developed model inputs for 2009

• We are using an unreleased version of CAMx (6.1) with a surface model option

• Model resolution is 4 km over Houston

- Wide array of measurements taken at Moody Tower during SHARP.
- Our analysis focuses on Moody Tower grid cell on April 21, 2009.
- Greatest HONO and O_3 concentrations in April.
- Model data taken from 2nd vertical layer to match height of measurements.

Surface Model Parameters

Parameter	Value			
	NO ₂	HNO ₃	HONO	
K _{veg} , unit-less	1.00E+10	1.00E+10	1.00	
K _{soil} , unit-less	1.00E+10	1.00E+10	1.00	
k _{leach} , min ⁻¹	0.01	2.4E-04	4.8E-04	
k _{pen} , min ⁻¹	0.01	0.01	4.8E-04	

Data Coofficient	Value		
Rate Coefficient	$NO_2 \rightarrow HONO$	$HNO_3> HONO$	
Photolysis Rate Constant (J), min ⁻¹	0.01	2.4E-03	
Thermal Rate Constant (k), min ⁻¹	0.002	0.00	

Three different model scenarios.

Scenario	Emission Inventory	Surface Model	
BASE	base	no	
EMIS	base + 0.8% HONO:NO	no	
HETR	base	yes	

• Does additional HONO formation improve model performance?

• What is the effect on radical budgets and O_3 formation?

(qdd) ONOH

Conclusions

- Feasibility of a non-parameterized approach
- Heterogeneous production dominates
- Strong NO2 dependence
- Capture daytime HONO
- Night predictions a challenge

Thank You

 Funding for this study was provided by the Texas Air Quality Research Program (AQRP) under Project # 12-028

@williamvizuete

	BASE	EMIS	HETR
Radical initiation			
ОН	6.16	6.85	8.23
HO2	7.46	7.50	7.58
RO2	11.70	11.72	11.78
Radical Propagation			
ОН	49.84	51.21	54.21
HO2	27.52	28.29	29.43
other HO2	2.58	2.64	2.91
RO2	9.00	9.17	9.62
Oxidation Reactions			
HC/CO + OH	44.36	45.84	48.60
NO + NO2	80.58	82.81	87.29
Ox production	84.25	86.64	91.30

NO_x over predictions are a concern at the Moody Tower grid cell.
Large concentrations of NO_x are caused by large emission rates in the ship channel (~6 km to the east).