

What drives high wintertime ozone in the oil and natural gas fields of the western U.S.?

Ravan Ahmadov^{1,2} (<u>ravan.ahmadov@noaa.gov</u>)

S. McKeen^{1,2}, M.Trainer², G.J. Frost^{1,2}, J.M. Roberts², J. de Gouw^{1,2}, C. Warneke^{1,2}, J. Peischl^{1,2}, J. Gilman^{1,2}, Brown², P.Edwards^{1,2}, R.Wild^{1,2}, Y. Pichugina^{1,2}, A. Langford², R. Banta^{1,2}, A. Brewer^{1,2}, C. Senff^{1,2}, A. Karion^{1,2}, C. Sweeney^{1,2}, S. Oltmans^{1,2}, G. Petron^{1,2}, R. Schnell², B. Johnson², D. Helmig³

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, ²Earth System Research Laboratory, National Oceanic and Atmospheric Administration ³Institute for Arctic and Alpine Research, University of Colorado at Boulder

CMAS conference, 09/29/2014

Source: Energy Information Administration based on data from various published studies. Updated: May 9, 2011

www.eia.gov

- During some winters over rural areas with high oil and natural gas production in Wyoming and Utah high O₃ episodes were observed (*Schnell et al., 2009; Oltmans et al., 2014*).
- Carter and Seinfeld (2012) and Edwards et al. (2014) used detailed chemical mechanisms in box models to study high wintertime O₃ production observed in Wyoming and Utah, respectively. The authors stressed the need for full 3D air quality models to address the high wintertime O₃ episodes.

NOAA/ESRL and other groups conducted two intensive field campaigns - Uinta Basin Winter Ozone Study (UBWOS) in January-February, 2012 (warmer, little or no snow conditions) and 2013 (colder and snowy) to study meteorology, oil/gas emissions and atmospheric chemistry in the Uinta Basin. In 2013 the highest O₃ concentration in the U.S. was observed in the Uinta Basin during winter!

Topography of the Uinta Basin, Utah

The region is sparsely populated (~50,000 people). The urban VOC and NO_x emissions are not high.

- Model the wintertime meteorological conditions in 2012 and 2013 over the Uinta Basin (UB), Utah; Focus on cold pool type stagnations during 2013;
- Estimate emissions of NO_x and VOCs for the oil/gas sector in the UB using the atmospheric measurements from the UBWOS field campaigns;
- Conduct air quality simulations using both bottom-up (EPA NEI-2011) and topdown emission scenarios;
- Investigate the major driving factors of high the wintertime ozone in the UB;
- A high resolution meteorology-chemistry modeling using WRF-Chem (with RACM gas chemistry) was conducted for January February, 2012 and 2013. The dry deposition and photolysis schemes in WRF-Chem were modified to take into account effect of snow cover.

Examples of CH₄ regressions, VOC/NO_y measurements at the Horse Pool site – The basis of the Top-Down inventory

Anthropogenic emission scenarios used in the WRF-Chem model: Emission totals for the oil and gas sector in the Uinta Basin

Emission inventories	Inventory source	CH ₄ (tons/year)	VOC (tons/year)	NO _x (tons/year)
Bottom-up	EPA NEI-2011	110,539	111,536	18,131
Top-down	Regression analysis	531,457	203,389	4,583

Total CH₄ flux estimate is from *Karion et al., 2013*

Top-down: Using NO_y/CH₄ and VOC/CH₄ ratios from surface observations during winters of 2012 and 2013

Total CH₄ and VOC emissions in NEI-2011 are lower by a factor of 4.8 and 1.8 than in the top-down estimates respectively!

Conversely, NO_x emissions are 4.0 times higher in the NEI-2011 inventory!

Ahmadov et al. (2014), ACPD

Anthropogenic methane emissions in the 4km resolution grid over the Uinta Basin (two inventories)

Observed and modeled methane time series at the Horse Pool site in 2013

Daytime (9-17MST) statistics:

Bottom-up case: *r*= 0.29, *med. bias*= -5.1 *ppm, med. (mod./obs.)*= 0.31 Top-down case: *r*= 0.37, *med. bias*= -2.9 *ppm, med. (mod./obs.)*= 0.61

Observed and modeled ozone time series at the Horsepool site

Observed and modeled ozone time series at the Horsepool site, 2013

Daytime (9-17MST) statistics: Bottom-up case: *r*= 0.33, *med. bias*= -39.8 *ppb, med. (mod./obs.)*= 0.51 Top-down case: *r*= 0.85, *med. bias*= -5.3 *ppb, med. (mod./obs.)*= 0.93

Ahmadov et al. (2014), ACPD

West-East Cross-section through the Uinta Basin

Nighttime and Early Morning

- Strong drainage flow
- Complicated circulation within Basin
- O₃ from previous day trapped

Daytime

- Light winds within Basin
- Low Mixing Heights
- Significant O₃ buildup in shallow layers

Ahmadov et al., ACPD, 201412

Horse Pool

4 m/s

O₃ distribution over Horse Pool on February 5th, 2013

Model O₃ comparisons against the aircraft measurements (Feb. 5, 2013)

Horse Pool measurements used for model/inventory verification

O_x – PAN relationship Depends on: VOC/NO_x ratios Photochemical mechanism

NO_x emission inventory assessment

	NO _x	Top-Dowr	p-Down		Bottom-up (NEI-2011)	
	Observed Median (ppbv)	Median Mod/Obs Ratio	r coefficient		Median Mod/Obs Ratio	r coefficient
2012	4.81	0.70	0.64		1.55	0.67
2013	17.16 🦊	0.75	0.46		1.86	0.35

Ahmadov et al., ACPD, 2014¹⁵

Is O₃ photochemistry sensitive to Bonanza power plant emissions and snow albedo?

Bonanza power plant: No Snow albedo: Yes

Highlights of perturbation/sensitivity analysis

Physical Processes - Perturbation Case	Impact on model O ₃ from oil/gas	Snow is essential	
Bare ground surface albedo (no snow)	104%	for high O_3	
Bare ground O ₃ surface deposition	48%		
NO _x Emission Perturbation Case	Impact		
Top-Down Oil&Gas NOx Emission Reduced 30%	1%	High O ₃ events are insensitive to NO _x reductions	
Top-Down Oil&Gas NOx Emission Reduced 67%	14%		
Top-Down Oil&Gas NOx Emission Reduced 100%	45%		
VOC Emission Perturbation Case	Impact	O ₃ is VOC limited	
Top-Down Oil&Gas VOC emis. Reduced 30%	33%	Aromatics have a disproportionate influence	
>C-2 Alkane VOC emis. set to zero	44%		
Aromatic VOC emis. set to zero	37%		
Top-down Aromatic/(>C-2 alkane) flux ratio = 0.10			

Ahmadov et al., ACPD, 2014 17

Model O₃ sensitivity to emissions of radical precursors

(Horse Pool site, Jan 29 to Feb 9, 2013, daytime)

Base Case NO _x emissions:	The model can predict high O3 concentrations without primary HONO emissions!		
NO: 90%			
NO ₂ : 8%			
HONO: 2%		Impact Percentage	
All NO _x emissions were inclu	uded as NO	5%	

CH₂O Statistics: Median Model/Observed Ratio = 0.53

	Impact Percentage
CH ₂ O primary emissions set to zero	18%

CH₂O Median Model/Observed Ratio = 0.36 after emissions removal

The primary formaldehyde emissions need to be considered!

Observed and modeled ozone time series at the Horsepool site, 2012

The same model settings and emissions for the 2012 and 2013 cases were used!

Ahmadov et al. (2014), ACPD

Summary

- > The emission inventories (CH₄, VOCs, NO_x) for the oil/gas sector can be significantly improved by using the top-down emission estimates.
- > The model is able to simulate high O_3 episodes in winter of 2013 using the top-down inventory, but not the bottom-up (NEI-2011) inventory.
- > The sensitivity simulations show reducing the VOC emissions would be an efficient way to mitigate wintertime O_3 problem in the Uinta Basin.
- High ozone in the Uinta Basin are primarily caused by the very high VOC versus NO_x emissions from the oil/gas sector, persistent stagnation episodes and high surface albedo and reduced deposition effect due to snow cover.

Thank you for your attention!

F.

Uintah Basin, 2013 Photo by S.Sandberg