Process Analysis Evaluation of Global and Regional Ozone Models Identifying Sources of Uncertainty

Barron H. Henderson; Joseph P. Pinto; Chris Emery

University of Florida

2013-10-30

Barron H. Henderson - University of Florida

CMAS2013

Summary

- As Oreskes (1994) and later Beck (2002) have demonstrated, atmospheric models are "open systems" that have "essentially unknowable" inputs
- Can have a wide variety of inputs
 - · Generated by different groups Minimum level of detail
 - Come from models with their own uncertainty
- Easily suffer from compensating errors
- Getting the "right answer" for the "wrong reasons"
- Model Performance Evaluations look at the result
- Process Analysis examines the processes
 - that are typically lost
 - useful in identifying important processes
 - useful to constraining development

Air pollution kills people

- Data from the World Health Organization
- Internationally: Easy to accept developing countries have more pollution.
- Developed world too "Four times more people die in the San Joaquin Valley from air pollution than they do from traffic fatalities." – Jared Blumenfeld, EPA Regional Administrator
- IARC classifies air as a carcinogen

Model Grid with Resolved Processes

Model Grid with Resolved Processes Surface radiation 3-D grid box Meteorology Incoming Emissions solar radiation Chemistry Mountains Land Air Pollution Ocean Predictions

Barron H. Henderson - University of Florida

©The COMET Program

Physics

Several modeling systems simulated the globe or northern hemisphere (Zhang et al. 2011; Emery et al. 2012; Mathur unpublished.)

- Several modeling systems simulated the globe or northern hemisphere (Zhang et al. 2011; Emery et al. 2012; Mathur unpublished.)
- Evaluation looked only at the continental United States

Models generally agreed

Figure 1 : Time paired predictions vs Figure 2 : Rank paired predictions vs observations observations

Barron H. Henderson - University of Florida

CMAS2013

Models generally agreed mostly

Figure 1 : Time paired predictions vs Figure 2 : Rank paired predictions vs observations _____

Barron H. Henderson - University of Florida

CMAS2013

Where did it come frome?

Figure 3 : Conceptual contributions of "background" air to total.

Figure 4 : Conceptual anthropogenic (red) and biogenic (green) contributions: in-phase contributions (dashed); out-of-phase (solid).

- Conceptually we can ask, do the models agree on how much biogenic emissions contribute to total ozone?
- Mostly, Henderson et al., 2012

Barron H. Henderson - University of Florida

What differences are there?

Problems: Compensating isoprene nitrate issue led to

- Better rank-paired performance for GEOS-Chem compared to CAMx in the East
- 2 Less correlation between background and total
- Still other differences.
- Two options:
 - Wait for results to disagree and diagnose the problem then?
 - Systematically compare processes
- Other inter-comparisons show differences and call for details
 - AQMEII Phase II calls for process-based comparisons
 - ITAP shows model differences

Process Analysis Overview

Figure 5 : Conceptual photochemical day

Process Analysis Overview

Figure 5 : Conceptual photochemical day

Process Analysis Overview

Figure 5 : Conceptual photochemical day

Implementation: Integrated Process Rates

Implemented:

- Transport
- Convective Mixing
- Wet deposition
- Emissions^a
- Dry deposition^a
- Heterogeneous Chemistry
- Gas-phase Chemistry

^aGas-phase emissions and dry deposition are solved either in the chemical solver or in asymmetric convection routines. Separation within convection has not yet been implemented.

Implementation: Integrated Process Rates

Implemented:

- Transport
- Convective Mixing
- Wet deposition
- Emissions^a
- Dry deposition^a
- Heterogeneous Chemistry
- Gas-phase Chemistry

^aGas-phase emissions and dry deposition are solved either in the chemical solver or in asymmetric convection routines. Separation within convection has not yet been implemented.

Figure 6 : Illustrative processes summation check where *p* is chemistry, transport, deposition, etc. Formaldehyde process sum compared to instantaneous species change in moles.

Implementation: Integrated Reaction Rates

- Sparse Matrix Vector Gear: available
- Kinetic Pre-Processor
 - Rosenbrock (coming soon)
 - LSODES (available)

Implementation: Integrated Reaction Rates

- Sparse Matrix Vector Gear: available
- Kinetic Pre-Processor
 - Rosenbrock (coming soon)
 - LSODES (available)

Figure 7 : Illustrative reaction sum check. Hydrogen peroxide sum of reactions vs chemistry process.

$$\Delta q_{chem} = \sum_{i} \left(\alpha_{i} k_{i} \prod_{j} [Rct]_{j} \right)$$
(1)

Implementation: Integrated Reaction Rates

- Sparse Matrix Vector Gear: available
- Kinetic Pre-Processor
 - Rosenbrock (coming soon)
 - LSODES (available)
- To do: incorporate species specific error correction from SMV-Gear or switch to Rosenbrock

Figure 7 : Illustrative reaction sum check. Hydrogen peroxide sum of reactions vs chemistry process.

$$\Delta q_{chem} = \sum_{i} \left(\alpha_{i} k_{i} \prod_{j} [Rct]_{j} \right)$$
(1)

CMAS2013

Allows for development of chemical indicators

- Sillman Ratio (eq 3): Ratio of radical losses (L) via non-nitrogen pathways to nitrogen pathways
 - In approximation, greater than 0.35 is NO_x limited

$$\frac{L}{L_{\text{NO}_x}} - 1 = \frac{L_{\text{HO}_x}}{L_{\text{NO}_x}} \approx \frac{P(\text{H}_2\text{O}_2)}{P(\text{HNO}_3)}$$
(2)

 We can use processes or these chemical metrics to identify regions of interest for further study.

Isoprene emissions

Figure 8 : GEOS-Chem (left) and CAMx (right) isoprene emissions integrated throughout their planetary boundary layers.

- GEOS-Chem's isoprene emissions are higher than CAMx's in the east
 - Consistent with Carlton and Baker ES&T 2011
 - GEOS-Chem uses MEGAN which emits more isoprene than BEIS, which was used by CAMx

Sillman Ratio

Figure 9 : GEOS-Chem (left) and CAMx (right) SILLMAN integrated throughout their planetary boundary layers.

- Many of the same features as seen in OPE
- Along US northern boundary, differences are more clear
- Recall that >0.35 is NO_x sensitive: the differences here are shades of NO_x limited

Focus Area

Figure 10 : Region for further analysis.

- Focus area selected for:
 - Isoprene emission discrepancy
 - Previous findings that western bias may be attributable to BC
 - Large populations exposed on the western seaboard

Planetary Boundary Layer Height (focus)

- Note the earlier rise and lower peak for GEOS-Chem
- The CAMx PBL is diagnosed from vertical diffusivity using ENVIRON's vertavg algorithm.

Figure 11 : GEOS-Chem (green) and CAMx (clue) planetary boundary layer height averaged within the focus area.

ISOP time series

Figure 12 : Time series ISOP plots for GEOS-Chem (left) and CAMx (right) on 2006-07-01 for the focus area.

Note: The time step associated with averaged met/biogenics.

NO_x time series

Figure 13 : Time series NO_x plots for GEOS-Chem (left) and CAMx (right) on 2006-07-01 for the focus area.

• Huh?

Sillman ratio time series

Figure 14 : Time series sillman ratio plots for GEOS-Chem (left) and CAMx (right) on 20060701 for the focus area. The black line marks the NO_x sensitive transition

- Note: timing of increasing OPE differs between the two models
- Could be an artifact of the timing and extent of the PBL rise

Barron H. Henderson - University of Florida

CMAS2013

Adv. Sillman ratio time series

Figure 15 : Time series sillman ratio plots for GEOS-Chem (left) and CAMx (right) on 20060701 for the focus area. The black line marks the NO_x sensitive transition

Woah! Warning, still very preliminary resutls.

Barron H. Henderson - University of Florida

CMAS2013

Conclusions and Disclaimer

These results are still under development and may change

- Post processing of PBL should be further reviewed
- 2 Night-time IRR may not be sampled correctly
 - Seems to only effect photolysis IRR, which are not in Sillman ratios
 - 2 But could affect advanced Sillman ratio
- Even so, we see interesting patterns that are likely robust
 - Explainable given known differences in wildfires and emission inventories
 - 2 These results were also consistent with a fixed-top analysis (0-1km AGL; not shown)

Future work

Process-based Analysis allow for:

- rapid identification of model discrepancies
- 2 rapid model development
- As researchers implement regional scale models for new territories, comparison with established global models provides:
 - process-level benchmarks for the regional scale models
 - a means of providing feedback to the global scale model about processes that need updating

Acknowledgements

- US EPA OAQPS: Farhan Akhtar, Heather Simon, Norm Possiel
- US EPA NCEA: Joseph P Pinto
- ENVIRON: Chris Emery
- Peking University: Lin Zhang
- Supported in part by (1) an appointment to the Research Participation Program at EPA/NERL administered by the Oak Ridge Institute for Science and Education; (2) startup at the University of Florida

Chemistry and Physics Options

	CX ¹	CQ ²	GC-NA ³	GC ⁴
Model	CAMx	Hemispheric	Nested North	GEOS-
		CMAQ	America	Chem
			GEOS-Chem	
Resolution	12 x 12km	108 x 108km	1/2° x 1/3°	4° x 5°
Meteorology	WRF		GEOS5	
Chemistry	Carbon Bond⁵		8-02-03	9-01-03 ⁶
Boundaries	GC 2° x 2.5°	N/A	GC 2° x 2.5°	N/A
Biogenic	BEIS		MEGAN	
Lightning	Scaled with	N/A	LTDIS scaled with Pickering	
	Koo profile		1997 profile	
Wildfires	SmartFire	N/A	GFED monthly average	
	daily			

1) Emery et al. AE 2012; 2) Simulations in development; 3) Zhang et al. JGR 2011; 4) Developed for this work; 5) Hemispheric CMAQ nitrates updated to account for isoprene nitrates; 6) Updates in chemistry will decrease NOx loss to isoprene nitrates

Planetary Boundary Layer Height (spatial)

Figure 16 : GEOS-Chem (left) and CAMx (right) planetary boundary layer heights.

- The CAMx PBL is diagnosed from vertical diffusivity using ENVIRON's vertavg algorithm.
- Note relatively good agreement in the southeast