Refining Ammonia Emissions Estimates with Observations during CalNex

Shannon Capps¹, Daven Henze², Armistead Russell¹, Athanasios Nenes¹

¹Georgia Institute of Technology, Atlanta, GA
²University of Colorado, Boulder, CO

NASA Graduate Student Research Fellowship
additional NASA funding
Unique Conditions

Topography conducive to trapping air

Favorable meteorology for farming

Abundant agricultural activity
Previous Work

Investigating ammonium nitrate sources & controls in the South Coast Air Basin

Russell & Cass, 1986
Clear Differences

Russell & Cass, 1986
CalNex 2010

May - June
NOAA . CIRES
Georgia Tech

vacuum ultraviolet fluorescence instrument: CO

chemical ionization mass spectrometry: NH₃, HNO₃

compact time of flight aerosol mass spectrometer: NH₄⁺, NO₃⁻

Nowak et al., 2012 (GRL)
CalNex 2010
March - July
NASA + AER, Inc.

Tropospheric Emissions Spectrometer (TES)

NH$_3$ tropospheric representative volume mixing ratio (RVMR)

K. Cary-Pereira; Shephard et al., 2011 (ACP)
TES Special Observations

March - July

CalNEX Step & Stare Obs

K. Cary-Pereira; Shephard et al., 2011 (ACP)
TES Special Observations

May - June

NASA

AER, Inc.

K. Cary-Pereira; Shephard et al., 2011 (ACP)
CalNex 2010

May - June

NSF

CalTech & Univ. of Colorado

Image: Google
CalNex 2010

May - June
NSF, NASA, NOAA
Georgia Tech + CalTech
Univ. of Colorado + AER, Inc.

Satellite Observations

Airborne Measurements

Ground-based Measurements
GEOS-Chem Adjoint

Initial NH_3 Concentration

NH_4 Concentration

0 5 10 16 21 27 (ppbv)

0 1.4 2.7 4.1 5.4 6.8 ($\mu g \text{ m}^3$)
GEOS-Chem Adjoint + ANISORROPIA

Checking Functionality

\[
\frac{\partial (\text{Nitrate})}{\partial (\text{NH}_3, \text{an})}
\]

- 2nd Order
- 1st Positive
- 1st Negative

\[m = 0.995, \quad R^2 = 0.812\]
GEOS-Chem Adjoint
Assimilation Approach

- **a priori emissions estimates**
- determine differences between observations *(TES, IMPROVE)* & modeled *(GEOS-Chem)* concentrations
- **new emissions estimates & sensitivities**
- assess whether *agreement* between observations & modeled concentrations suffice
- minimize the cost function by modifying specified parameters *(emissions)* with L-BFGS algorithm
Next Steps

• Complete integration of TES observation operator

• Perform assimilation of TES observations to adjust emissions rates over continental U.S.

• Evaluate new modeled concentrations against in situ observations
Satellite Observations

Tropospheric Emissions Spectrometer

NH₃ Retrieval
Satellite Observations

Tropospheric Emissions Spectrometer

NH_3 Retrieval

Global Swaths
Transects over Bakersfield
{ CalNex Step & Stare }

Shepard et al., ACP (2011)
GEOS-Chem Adjoint

Initial NH$_3$ Concentration

Henze et al., ACP (2007)
GEOS-Chem Adjoint + ANISORROPIA

Capps et al., ACP (2012)
GEOS-Chem v. TES NH$_3$
GEOS-Chem v. TES NH$_3$
GEOS-Chem v. TES NH$_3$
Next Steps

- **a priori emissions estimates**
 - determine differences between observations & modeled (GEOS-Chem)

- **new emissions estimates & sensitivities**
 - assess whether agreement between observations & modeled concentrations suffice

- **minimize the cost function by modifying specified parameters (emissions) with L-BFGS algorithm**
California Nexus

Research at the Nexus of Air Quality and Climate Change

(NOAA, NASA, CalTech, Georgia Tech, CIRES)