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1. INTRODUCTION 

 
Biogenic emissions are an important input to 

atmospheric chemistry models. Due to the 
nonlinear response of ozone formation to nitrogen 
oxides (NOx) and volatile organic compound 
(VOC) emissions, accurate simulation of biogenic 
VOC emissions can be crucial to predicting the 
relative importance of controlling NOx or VOC 
emissions (Xiao et al., 2010).  

The biogenic emissions model MEGAN 
(Model of Emissions of Gases and Aerosols from 
Nature, Guenther et al. 2006) requires numerous 
inputs. The phenology input to MEGAN include 
leaf area index (LAI), or the ratio of leaf area to 
ground area. Recent studies give conflicting 
conclusions on the impact of interannual variation 
in LAI on isoprene emissions. 

Gulden et al. (2007) indicate that variation in 
LAI is at least as important as variation in 
temperature. A more recent paper by Tawfik et al. 
(2012) disputes this claim, indicating that 
interannual variation in LAI is actually unimportant, 
particularly when compared to soil moisture, 
temperature, or photosynthetically active radiation 
(PAR). However, it is difficult to compare the 
results from these two studies directly due to 
differences in the interannual variability of their LAI 
data. In light of the disparity in the conclusions 
drawn by these two studies, we have run MEGAN 
with two datasets of differing variability with all 
other considerations held constant. 

The root cause for vegetation variability is 
nutrient availability, namely water, carbon, 
nitrogen, and phosphorous. Of these, water is the 
most readily available data at the synoptic scale. 
Recent studies have tried to quantify the impact of 
water stress on vegetation at regional and global 
scales (Bobée et al. 2012). In their analysis of 
satellite vegetation data, Beck et al. (2012) found 
that biomes above 45°N displayed varying 
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responses to environmental stressors with some 
areas increasing primary production and others 
decreasing primary production. Some have even 
gone so far as to use vegetation cover as an 
indication of drought (Aguilar et al. 2012). To 
better understand what drives variability in LAI, we 
have made some qualitative comparisons between 
drought condition and LAI anomaly in the US. 

 
2. METHODS AND RESULTS 
 
2.1 Variability of LAI datasets 

 
Two datasets with different amounts of 

interannual variation in LAI were chosen for this 
study. The first dataset consists of ten years–2001 
to 2010–of data from the MODIS instrument on the 
Terra satellite that have been processed using the 
algorithm detailed by Yuan et al. (2011) (referred 
to as BU data from here forward). This data shows 
significant variation (Fig. 1a), with a maximum 
interannual variation (IAV in Eq. 1, as used by 
Tawfik et al., 2012) of 94%.  
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𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 
x�,� = 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑎𝑛𝑑 𝑦𝑒𝑎𝑟 

x�� = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑦𝑒𝑎𝑟𝑠 
 

In the mixed forests (Fig. 2) of the Southeast 
US, where isoprene emissions are highest, the 
IAV is actually lowest. Most of this region shows 
IAV of less than 10% in August. The IAV over 
open shrublands and grasslands in West Texas is 
highest at 40 to 50% in August. Well developed 
vegetation such as forests have less variable LAI 
since they do not have to devote as much primary 
production to establishing roots and stems (San 
Jose and Montes, 2007). Similarly, croplands 
show more variability since they must grow from 
seed every year, but not as much variability as 
native grasslands that do not benefit from irrigation  
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Fig. 1 (a) Interannual variation for the BU (left) and Stockli et al. (right) LAI datasets in August for the years 2001 to 2010. BU 
data is at quarter-degree resolution while Stockli et al. data is at one-degree resolution. b) Interannual variation in MEGAN 
isoprene emissions for 21 August with the respective LAI inputs. (c) Average MEGAN isoprene emissions for the same day in 
mg/m2. 

Fig. 2. Biome distributions in the USA from MODIS Land Cover Dataset (MCD12Q1) for 2006 using Land cover Type I. 
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and fertilization. August showed the highest 
variability compared to other months, while 
January showed the lowest. 

The second dataset comes from work 
performed by Stockli et al. (2011) to create a 
comprehensive phenology dataset. While their 
dataset also uses MODIS input, it includes the use 
of extensive reanalysis. The end result is much 
less variable than the BU data, both spatially and 
temporally (Fig. 1a). The maximum IAV in the 
Stockli et al. data for August is 26% while the 
maximum IAV in the BU data is 94%, a nearly 
four-fold difference. Also, the IAV in the Stockli et 
al. data is less than 10% for most of the nation 
while the IAV in the BU data is greater than 10% 
for over half of the nation. The broad pattern of 
variability is similar for both datasets. 

The disparity in the variation of these LAI 
datasets stems from the algorithm used to process 
MODIS input. The algorithm employed by BU 
directly utilizes MODIS observations, adjusting the 
data primarily to correct for error produced by 
clouds or instrument failure (Yuan et al. 2011). 
The algorithm employed by Stockli et al. involved 
extensive constraints on the data, including 
maximum and minimum LAI values based on 
biome and use of only data points from MODIS 
with no quality control flags, including limiting data 
to days with no cloud cover. Additionally, the 
Stockli et al. data was put through an empirical 
phenology model that incorporates moisture and 
temperature conditions. The main goal of the 
Stockli et al. data is to correctly identify timing of 
important phenological events such as budburst, 
whereas the BU data is focused on presenting the 
best MODIS data possible. The goal of each is 
distinct, and therefore produces very different 
results. Tawfik is the only researcher to have used 
Stockli et al.’s dataset to run MEGAN to date. 

 
2.2 MEGAN Results from Two Datasets 

 
To assess the impact of interannual variation 

in LAI on biogenic emissions, we ran MEGAN to 
compute isoprene emissions using both the Stockli 
et al. data and the BU data. These runs were 
performed with static plant functional type (PFT) 
distributions provided by Alex Guenther on the 
MEGAN website for the year 2008. Leaf age was 
computed by MEGAN. We used constant 
meteorology by replicating the WRF output (also 
provided on the MEGAN website) for July 20, 
2008 to all time steps. PAR was computed from 
the meteorology input. The results are therefore 
artificial in that both the variation in meteorological 
conditions and PAR through the decades is not 

accounted for. These results therefore show the 
isolated influence of LAI variability as a driving 
parameter in MEGAN. 

The results from MEGAN indicate less 
interannual variability in the simulated isoprene 
emissions than in the LAI input (Fig. 1b). This 
reflects the response of isoprene emissions to LAI 
in MEGAN, where isoprene emissions level off at 
high LAI values (Guenther et al., 2006). The 
spatial patterns of variability remain, but the 
magnitude of the IAV is reduced by 5 to 10 
percentage points throughout much of the country. 
The high variability through the center of the 
country, where isoprene emissions are low (Fig. 
1c), is drastically reduced in both cases. Over the 
Southeast, where isoprene emissions are the 
highest, the interannual variation in LAI and 
isoprene emissions is less than 5% in both 
datasets. Even so, it remains to be seen from 
photochemical modeling whether the fluctuations 
from year to year could still be significant to ozone 
concentrations or sensitivities.  

 
2.3 Correlation of LAI Variability to 
Meteorological Variability 

 
As a qualitative assessment of the 

dependence of LAI maxima to the weather 
patterns in an area, we compared LAI anomaly 
maps to drought condition maps for the continental 
United States. Maps of the Palmer Drought 
Severity Index (PDSI) were taken from the 
National Climate Data Center (Historical Palmer 
Drought Indices). LAI anomalies were calculated 
using the BU data relative to mean conditions for 
the years 2001 to 2010 and are unitless. Fig. 3 
illustrates two years—2005 and 2007— to 
compare wet and dry conditions in different parts 
of the country. In 2005, the Southwest and 
Southeast both experienced wet conditions, while 
the northwest experienced a drought. The LAI 
showed positive anomalies in the early spring in 
the West, but negative anomalies in the 
Southwest. By August, however, the West shows 
mostly normal LAI, the Southwest shows positive 
anomalies, and the region around Illinois shows a 
depression in LAI that corresponds to the drought 
in the area that summer. 

In 2007, the Southwest and Southeast 
experienced severe droughts, while most of the 
Central Plains experienced a wet year. Again, the 
conditions in the early spring do not necessarily 
reflect the drought condition, but by late summer 
there is a general match between wet regions 
having elevated LAI and drought regions having 
depressed LAI. In the Southeast, some areas  
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Fig. 3. Drought condition and LAI anomalies for March and August in 2005 and 2007. Drought is county-wide 
Palmer Drought Severity Index. LAI anomalies come from BU data. 
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experiencing severe drought show small 
increases in LAI, even into August. The 
investigation of these trends, especially to assess 
any correlation between drought and LAI anomaly 
for different regions in the United States will be the 
focus of future research. For our analysis, we will 
use PDSI data with a Penman-Monteith PE as 
developed by Dai (2011a). We will also use 
monthly temperature and precipitation data 
developed by the PRISM Climate Group at the 
University of Oregon (Daly 1994, 2002) to 
compare trends in temperature and precipitation 
anomalies to LAI anomalies. 

  
3. CONCLUSION 

 
While we have shown that LAI varies 

significantly from year to year due to 
meteorological influences, there is disagreement 
on the magnitude of interannual variation (Gulden 
et al. 2007, Tawfik et al. 2012). MEGAN runs show 
a muting of interannual variability of isoprene 
emissions compared to the amount of variability in 
the original LAI inputs. If the variability of other 
factors is amplified in MEGAN output, this could 
support LAI variability being less important than 
those factors. 

Our future work will include using full dynamic 
meteorology from WRF so that we can assess the 
sensitivity of isoprene emissions to temperature, 
soil moisture, and photosynthetically active 
radiation as well as LAI. We will also utilize PAR 
derived from satellite data rather than WRF cloud 
placement. There is evidence that MEGAN output 
is particularly sensitive to PAR inputs (Ferreira et 
al. 2010). Ultimately, we will run a photochemical 
model such as CMAQ coupled with MEGAN to 
assess the sensitivity of ozone and secondary 
aerosol formation to LAI variability. 
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