A New Decision Support System Based on a Service-Oriented Architecture

Neil Wheeler, Tami Funk, Sean Raffuse, Stacy Drury, Paul Nuss, Kevin Unger, Liron Yahdav, Daniel Pryden, Alan Healy, Michael Haderman, and Lyle Chinkin
Sonoma Technology, Inc.
Petaluma, CA

John Cissel, Joint Fire Science Program, Boise, ID
H. Michael Rauscher, Rauscher Enterprises LLC, Leicester, NC

Presented at the
9th Annual CMAS Conference
Chapel Hill, NC
October 11, 2010
Introduction

- Joint Fire Science Program (JFSP)
- Design issues
- Software Tools and Systems (STS) study
- Interagency Fuels Treatment Decision Support System (IFT-DSS)
- JFSP vision
- STS future
- An approach, not a solution

In a distributed collaboration environment, what we want is ...

...that can take its place within the context of a mission environment
...that can be configured into the capability required for a given operation...
...conforming to key interface standards...

Modular, reusable elements...

Source: Carnegie Mellon Software Engineering Institute
Design Issues

- Multiple communities
- Implementation restrictions
 - Multiple agencies
 - IT policies
 - Skill levels
- Overlapping process implementations
 - Science
 - Interfaces
 - Modularity
Multiple Communities

- Fire and Fuel Operations Managers
- Scientist Developers
- Interagency Fuel Treatment Decision Support System Coordination Team
- Information Technologists and Software Managers
- Database Stewards

Governance through Agency Service Management, including National Wildfire Coordination Group
JFSP Vision

User communities

Integrated Systems
(IFT-DSS, BlueSky,
WFDSS, WFAS)

Common Interface
Standards
(allows for connections)

Capabilities
(algorithms, models, data)

Scientists and data providers create tools

Governance
Design Approach

• Community engagement
• Workflows
• Service Oriented Architecture (SOA)
• Separation of functions
 – User interface
 – Scientific modeling framework
 – Models
• Process level science
Service Oriented Architecture

- A generic software architecture framework designed to support a collection of services, such as databases and software applications
- Has well-defined software and data interfaces
- Facilitates the integration of new and legacy software applications
- Facilitates inter-operability with other systems
Architecture (1 of 3)

IFT-DSS Application (User Interface)

Scientific Modeling Framework (SMF)

Components

Models
IFT-DSS topology and the communication mechanisms
Model Integration Methods

Architecture (3 of 3)
Implementation Schedule

• Prototype – completed (June 2010)
 – Functional
 – One workflow
 – Limited GIS capability
 – All model interfaces

• Development and testing
 – Version 1.0 (June 2011)
 – Version 2.0 (June 2012)

• Enterprise operations – fall 2012
Discussion

• SMF is applicable to any discipline
• The SOA facilitates access to authoritative systems that are external to a DSS
• Some of the approaches to model integration in the IFT-DSS might be transferable to the integration of process-level science in meteorological, emissions, and air quality modeling
Summary and Conclusions

• A DSS is more than a model
• The development of an effective and sustainable DSS requires the participation of a community
• The STS study and IFT-DSS attempt to address long-standing issues with modularity and model interactions in the fuels treatment community
• The CMAS community faces many of the same challenges and might benefit from the lessons learned and engineering practices employed as a result of the STS study
Acknowledgments

Joint Fire Science Program

Fuels Management Committee

Test User Group

Collaborating Fire Scientists
Questions

Ms. Tami Funk
IFT-DSS Project Manager
Sonoma Technology, Inc.
tami@sonomatech.com

JFSP STS Study
http://frames.nbii.gov/jfsp/sts_study

IFT-DSS
http://www.firescience.gov/JFSP_IFT-DSS.cfm