Modeling subgrid scale variability in pollutant concentration due to heterogeneous urban emission

Myrto Valari1 and Vlad Isakov2

1NRC Post Doc at US Environmental Protection Agency
2US Environmental Protection Agency
Specificities of the modeling approach

- **Urban** air-quality: anthropogenically driven
- **Exposure** estimates: 1 km and below
- **Health impact**: assess correlation with health outcomes

AQ network: limited spatial representativeness

AQ models: resolution limits

Residential

Busy road
Conceptually

Emissions

\[C = \frac{\sum \text{Moles}_i}{\sum \text{Area}_i} \]

CTM world

'dead' world

Concentrations

\[c_1 \quad c_2 \quad c_3 \]
The model

- Force the CTM with local emission terms

\[E_i = E + E' \]

\[\bar{E} = \sum_{i=1}^{N} a_i \cdot E_i \]

with \(a_i \) some parameter of the subgrid distribution, such as landuse

- Advection, diffusion, chemical transformations etc. act on the ‘perturbation’

- CTM model ‘local’ concentrations \(\bar{C}_i \) along with \(\bar{C} = \sum_{i=1}^{N} a_i \cdot C_i \)

\[\frac{\partial c_i}{\partial t} + \bar{U}_j \frac{\partial c_i}{\partial x_j} = - \frac{\partial (u'_j c')}{\partial x_j} + E_i + P(\bar{c}_i) + L(\bar{c}_i) \cdot \bar{c}_i - \frac{(c_i - \bar{c})}{T_{mix}} \]

local emission

local concentration

subgrid mixing (implicit)
The downscaling approach here is **hybrid**:

Explicit: because direct downscaling towards 1 km

Statistical: because of emission allocation

Implicit: because of the subgrid mixing term (not yet implemented)
Downscaling from 12km...

East US

Georgia

12km x 12km
How close?

Issues raised:
- Uncertainties in the input
- Parameterization limitations
- Unknown subgrid processes
- Model evaluation issues
Typical emission model (SMOKE) output (or CTM input)

All sources included NOx emissions (8a.m. LT)

May 6, 2002
Explicit:

Statistical:

• **add** subgrid-scale information
• calculate grid **distribution**

Subgrid-areas or ‘micro-environments’:

1. On-roads
2. Residential (heating)
3. Commercial areas
4. Industrial areas
5. Recreational areas (parks, golf courses...)
Add subgrid scale information

Population
census block

Residential heating

m²/census tract

Road miles

Commercial
Grid distributions: 1 km grid ratios

Roads
- Max ≈ 17%
- Median ≈ 2%

Residential
- Max ≈ 0.2%
- Median ≈ 0.006%

Commercial
- Max ≈ 0.6%
- Median ≈ 0.006%

Industrial
- Max ≈ 0.4%
- Median ≈ 0.004%

Recreational
- Max ≈ 100%
- Median ≈ 33%
Source-specific emissions (NOx at noon)

- Roads: µg s\(^{-1}\)m\(^{-2}\)
- Residential: µg s\(^{-1}\)m\(^{-2}\)
- Commercial: µg s\(^{-1}\)m\(^{-2}\)
- Industrial: µg s\(^{-1}\)m\(^{-2}\)
- Recreational: µg s\(^{-1}\)m\(^{-2}\)
1km grid area ratios %

- **R**oads: median at 2% with uniform distribution
- **R**esidential: narrow but relatively uniform
- **C**ommercial and **I**ndustrial: narrow and rare
- **R**e**c**reational: may be 0 or 100%

Source-specific Emissions at noon

Sector-specific vs. all sectors

\[E_i = \frac{N_i}{A_i} \] subject to speciation & temporal

Subgrid emissions \[E_i = \frac{N_i}{A_i} \] subject to speciation & temporal
Forcing terms \[\frac{E_i}{\overline{E}} \] express local deviations from averaged flux
Results for NOx: local emission forcing

Road emissions are ‘diluted’ by a factor of 40

Residential by a factor of 500
Results for NOx: local emission forcing

Industrial

Commercial

\[E_i / \bar{E} \]

median 1200

median 700
Results for NOx: local emission forcing

\[\frac{E_i}{\overline{E}} \]

Recreational

median .02
Comparison between 1 and 4 km

1km

4km

Roads

Residential

1km

4km

Roads

Residential

µg s⁻¹ m⁻²
Differences in temporal profiles

NOx

Residential

Hour of day

Roads

Hour of day

E_i/E

between grid-cells variability

median
Differences between counties

De Kalb County

Residential

Fulton County

NOx

E_i / \overline{E}

Median

Variability between grid-cells

Hour of day
Differences between pollutants

Residential

\(\frac{E_i}{E} \)

- NVOL
- NO\textsubscript{x}

\(\times 2 \)

Hour of day

Roads

\(\frac{E_i}{E} \)

- NO\textsubscript{x}
- NVOL

\(\div 4 \)

\(\frac{1600}{800} \)

\(\frac{40}{10} \)
In progress:

- Implementation into CMAQ
- Parameterization of the subgrid mixing T_{mix}
- Evaluation (available measurements, local scale model)

Medium term conclusions:

High variability in forcing terms:
- spatially between grid cells
- between counties
- temporally
- between pollutants

Attenuation of resolution effects (similar results for 1 and 4 km)

Tips:

- Low computational cost (selected grids, selected ‘sectors’)
- Link between local concentrations and time activity
- Concentrations ‘ready to use’ for exposure estimates