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1. INTRODUCTION 
 
Lowering the 8-hour ozone standard increases 

the importance of background ozone and transport 
in contributing to ozone nonattainment.  Accurate 
simulation of ozone transport in photochemical 
grid models will be critical for the development of 
effective ozone control strategies.  This study 
evaluated modeled ozone transport in the 
Comprehensive Air quality Model with extensions 
(CAMx; ENVIRON, 2010) photochemical model for 
several Texas ozone episodes, and used CAMx 
probing tools to assess transport contributions and 
their response to potential emission changes.   

The modeled representation of transport 
pathways from ozone source regions into Texas 
was investigated by comparing Hybrid Single 
Particle Lagrangian Integrated Trajectory Model 
(HYSPLIT; Draxler and Hess, 1997) back 
trajectories based on Eta Data Assimilation 
System (EDAS) meteorology with back trajectories 
based on the MM5 meteorological data supplied 
as input to CAMx.  The CAMx Anthropogenic 
Precursor Culpability Assessment (APCA) tool and 
the CAMx Higher Order Decoupled Direct Method 
(HDDM; Dunker et al., 2002) tool were used to 
provide complementary information on upwind 
source contributions to Texas ozone.  HDDM was 
also used to evaluate the sensitivity of Texas 
ozone to potential changes in emissions in upwind 
source regions. 

 
2. MODEL CONFIGURATION  

 
CAMx was applied for three Texas high ozone 

episodes in 2005-6 using an updated vertical 
transport algorithm and the Zhang dry deposition 
algorithm (Zhang et al. 2003; Zhang et al. 2008), 
which are newly implemented in CAMx version 
5.21. The Zhang algorithm is a leaf area index 
(LAI)-based, state-of-the-science scheme which is 
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used in Environment Canada’s A Unified Regional 
Air-quality Modeling System (AURAMS) air quality 
model and has an updated representation of non-
stomatal deposition pathways. The Zhang 
algorithm has been tested extensively through its 
use in daily air quality forecasting and has been 
shown to reproduce observed fluxes of ozone and 
SO2 with reasonable accuracy.  During its 
implementation in CAMx, the capabilities of the 
Zhang scheme were extended by adding the 
option to use episode-specific satellite LAI data.  

 

 
Figure 1.  Source regions within the 36 km grid.  APCA 
source regions are indicated by red borders and HDDM 
source regions are shaded.  The Ohio-Tennessee 
Valley region (OH-TN) is shaded blue and the 
Southeastern U.S. (SE) region is shaded pink. 

 
Periods of the 2005-6 Texas high ozone 

episodes favorable for the transport of ozone and 
precursors into Texas were identified from 
HYSPLIT back trajectories based on EDAS 
meteorological fields and analyses of ambient 
ozone data from rural upwind monitoring sites. 
Potential source regions were also identified as 
shown in Figure 1.   As an example of the analysis 
carried out for all of the 2005-6 transport episodes, 
we focus here on one of these episodes, June 13-
15, 2006.
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Figure 5.  Change in daily max 8-hour ozone at rural Texas monitors with OH-TN eaNOx emissions reduction. 
 
 
 
 

 
 
Figure 6.   June 14, 2006 comparison of APCA and HDDM ZOC estimates for eaNOx.  
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For the OH-TN and SE source regions, the ZOC is 
given by 
 
ZOC(OT+SE)≈(S(1)

OT-½S(2)
OT,OT)+(S(1)

SE-½S(2)
SE,SE)-  

S(2)
OT,SE.                                                                                              (5) 

 
Below, we present only the components of the 
ZOC for OH-TN and SE eaNOx emissions, as the 
cross term S2

OT,SE  was negligible.  A positive ZOC 
corresponds to an ozone decrease at a receptor 
upon removal of the source in question.  The ZOC 
derived from the HDDM sensitivities may be 
compared with the APCA contributions totaled 
from states comprising the SE and OH-TN (OT) 
source regions used in the HDDM analysis.   

Figure 6 compares the APCA ozone 
contributions from eaNOx and the ZOC from OH-
TN and SE eaNOx.  Both the APCA and HDDM 
probing tools ascribe a larger contribution to the 
OH-TN source region than to the SE source 
region.  The APCA and HDDM tools are in 
agreement with one another on the relative 
importance of these two source regions in 
contributing to high ozone in Texas, and are 
consistent with the HYSPLIT back trajectories 
shown in the right panel of Figure 2, which pass 
over the OH-TN states but not the SE states.   
Because these three tools, independent of each 
other and having different formulations, give 
similar results, greater confidence may be placed 
in the source attribution than if only a single tool 
had been used. 
 
4. CONCLUSIONS 

 
We have shown how a suite of tools can be 

applied to analyze CAMx ozone transport.  These 
tools provide complementary information on the 
model winds that define the transport pathway 
from source regions to receptor regions, ozone 
source apportionment, and sensitivity of receptors 
to emissions changes in the source regions.  
Because their formulations are independent of one 
another, each of these tools can serve as a way to 
evaluate information provided by the other tools.  
For example, the APCA and HDDM tools can both 
provide estimates of source apportionment, and 
the HYSPLIT back trajectories can be used to 
assess whether that source apportionment is 
reasonable.   Used in combination, these tools can 
provide a valuable resource for control strategy 
development. 
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