
EPA/600/R-99/030

Chapter 18

INTEGRATION OF SCIENCE CODES INTO MODELS-3

Jeffrey Young*

Atmospheric Modeling Division
National Exposure Research Laboratory
U.S. Environmental Protection Agency

Research Triangle Park, NC 27711

ABSTRACT

A complete group of CMAQ science codes has been integrated into the Models-3 system
following a set of rules to ensure compatibility and compliance with design principles that enable
modularity and flexibility and that allow easy modification and replacement of science process
components. This chapter describes the concept of classes and modules, the Models-3
input/output application programming interface, science code configuration management, and
model building and execution concepts

*On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.
Corresponding author address: Jeffrey Young, MD-80, Research Triangle Park, NC 27711. E-mail:
yoj@hpcc.epa.gov

EPA/600/R-99/030

18-1

18.0 INTEGRATION OF SCIENCE CODES INTO MODELS-3

18.1 Introduction

Integration of the Community Multiscale Air Quality (CMAQ) science into the Models-3 design
paradigm takes place at the level of transforming the science, described by systems of partial
differential equations, into a discretized and parameterized numerical model. The integral parts
that are involved in the process are the coding language (Fortran 77, currently), an operational
design, a set of coding rules, computer platforms, model data access methods and storage
management, and a public code repository. Models-3 is a user interface system designed to
facilitate the development and use of simulation models by scientists, model developers and
regulatory users. The Models-3 framework provides a high-performance computational structure
for a community modeling system that currently contains distinct emissions, meteorological, and
chemical transport air quality models. In this chapter we define a model as a single, complete
executable built from a set of compiled subroutines that define either a core environmental
simulation model or a processing system that provides data to a simulation model. The
framework also links the models to data management tools and analysis/visualization software.

A complete set of CMAQ science codes has been integrated into the Models-3 system. The
development and integration of these codes has followed a set of principles relating to design and
implementation concepts that are discussed in this chapter.

We have promulgated a small set of software requirements and integration rules related to these
concepts so that science codes can be developed that conform to Models-3 requirements. With
this approach, the general user community may readily develop and execute models that use the
rich and growing base of science codes and data that reside in Models-3. A user may contribute
to that base and allow others to integrate his developments by applying these integration rules.

With access to all the released, or publicly available source files, a developer can supplement his
own codes and readily develop and test model versions within a highly modularized building
environment. On the other hand, people whose primary interest is studying the effects of control
strategies or regulatory applications can easily build and execute standard model versions for
different emissions scenarios and modeling domains.

The Models-3 and CMAQ systems have been developed to foster community access, and to
facilitate the improvement of the CMAQ system over time by the easy inclusion of new
scientific models and modules developed by researchers in the larger scientific community.

The CMAQ system contains a number of models needed to carry out an air quality model
application. Defining a “model” to be an executable built for a specific application, the codes
that make up the model are relatively general. To build a specific model, the user selects a set of
fundamental criteria that determine the application, such as the modeling domain, the chemical
mechanism, and physical process solvers. The reader is referred to Chapter 15 for details.
Defining a generic model as the set of codes from which a particular application can be built, the
following generic CMAQ models are currently available in the system:

• ICON provides the required initial conditions for a model simulation as concentrations of
specified individual chemical species for the complete modeling domain.

EPA/600/R-99/030

18-2

• BCON provides the needed simulation boundary conditions as concentrations of
individual chemical species for the grid cells surrounding the modeling domain.

• Emissions-Chemistry Interface Processor (ECIP) transforms emission files produced
by the Models-3 Emissions Processing and Projection System (MEPPS) into an hourly,
3-D emissions data file for the CMAQ Chemical Transport Model (CCTM). For a
detailed discussion of the MEPPS operations, refer to Chapter 6 of the Models-3 User
Manual [6].

• The Meteorology-Chemistry Interface Processor (MCIP) interprets the output from a
meteorological model, such as the Penn State/NCAR fifth-generation Mesoscale Model
(MM5) [8], and prepares the data for use in the CCTM.

• The Landuse Processor (LUPROC) provides a high-resolution landuse database for the
CMAQ system. For example, MCIP uses the output from LUPROC to obtain surface
characteristics for computing dry deposition and other planetary boundary layer
parameters.

• The photolysis model (JPROC) computes photolytic rate constants (j-values) for the
gas-phase chemistry used in the CCTM.

• The Plume Dynamics Model (PDM) generates plume dimensions and positions along
with other related data for use in applying the plume-in-grid module in a CCTM
simulation.

• The CMAQ Chemical Transport Model (CCTM) simulates the chemical and physical
processes affecting tropospheric pollutants and estimates pollutant concentrations (e.g.,
ozone, particulate matter (PM2.5 and PM10), and carbon monoxide) and acid deposition.

The reader is referred to the Models-3 User Manual [6] for more details and descriptions of the
usage of these models.

Each generic model consists of a complete set of codes that can be compiled and linked into
different model executables by means of specific user-selected options with regard to groups of
code called modules, the horizontal grid and vertical layer domain, the chemical mechanism, the
computer platform, and compiling options.

One of the key issues in modeling is the manner in which developers and users must deal with
reading, writing and using model data. Models-3 provides a user-friendly Input/Output
Applications Programming Interface (I/O API) library [4] that enables a universal approach to
managing data across subroutines, models, platforms, and networks.

The organization of the remainder of this chapter is as follows: We discuss the concepts that lead
to and the implementation of classes and modules in the next section (18.2). We describe I/O
API usage and function in Section 18.3. Code management, an important consideration for
complex models, is discussed in Section 18.4. In Section 18.5 we discuss how a model is
organized and constructed through Models-3. Issues in regards to executing a particular model
are discussed in Section 18.6. Using the Models-3 framework to construct and execute a model

EPA/600/R-99/030

18-3

is summarized in Section 18.7. Finally in Section 18.8, we discuss concepts and issues that
address Models-3 compliant coding practice and how to ensure code development that is
conformant to the Models-3 system.

18.2 Classes and Modules

18.2.1 Operational Design

The design concept of code classes is used to facilitate the plug&play capability in the Models-
3/CMAQ system. Science process modules are grouped into classes that are primarily based on
the time-splitting paradigm used in a CMAQ Chemical Transport Model (CCTM). Generally
each class is associated with a particular science process. A module consists of a complete set of
subroutines capable of modifying the concentration field related to the science process associated
with the module’s class. The CCTM is designed so that each module computes the changes in
the concentration field (CGRID) specific to that particular science process. A science module
operates on the entire three-dimensional gridded concentration field for a period of time called
the synchronization time step interval. The module performs whatever looping over that grid
and over whatever internal time steps that are necessary to complete its function.

Table 18-1 lists the classes and associated processes and modules currently available for the
CCTM. In building a particular CCTM, one module is selected from each class.

The other CMAQ models (i.e., those other than the CCTM) do not generally follow the time-
splitting science process paradigm. However, for convenience and consistency in model
building, and for code organization, we have extended the concept of classes and modules to
apply to the other CMAQ models. Class and module organizations similar to those in Table 18-1
exist for the other models but are less extensive.

EPA/600/R-99/030

18-4

Table 18-1. The Classes, Processes, and Modules Available in CCTM

CLASS (PROCESS) MODULES

driver (Control Model Execution) ctm
init (Initialize Model) init
hadv (Horizontal Advection) hbot (Bott’s scheme)

hppm (Piecewise Parabolic Method)
hadv_noop (no operation)

vadv (Vertical Advection) vbot (Bott’s scheme)
vppm (Piecewise Parabolic Method)
vadv_noop (no operation)

hdiff (Horizontal Diffusion) unif (Uniform eddy diffusion)
hdiff_noop (no operation)

vdiff (Vertical Diffusion) eddy (eddy diffusion)
vdiff_noop (no operation)

adjcon (Advected Mass Adjustment) denrate
adjcon_noop (no operation)

phot (Photolytic Rate Constants) phot
phot_noop (no operation)

chem (Gas Chemistry Solver) smvgear (SMVGEAR solver)
qssa (Vectorized QSSA solver)
chem_noop (no operation)

aero (Aerosol Solver) aero
aero_noop (no operation)

aero_depv (Aerosol Dry Deposition) aero_depv
aero_depv_noop (no operation)

cloud (Cloud and Aqueous Chemistry)cloud_radm (RADM cloud scheme)
cloud_noop (no operation)

ping (Plume-in-Grid) ping_smvgear (uses SMVGEAR solver)
ping_qssa (uses QSSA solver)
ping_noop (no operation)

procan (Process Analysis) pa
couple (Couple for Transport) gencoor
util (Utility Processing) util

18.2.2 CGRID

To facilitate the science processing for the different chemistries involved in CMAQ, the
concentration field array CGRID, is partitioned into four species classes: gas chemistry, aerosols,
non-reactive, and tracer species. This order is mandatory and maintained throughout the
processing. A subroutine, CGRID_MAP provides the means to correctly index into the CGRID
array for each science process that deals with individual classes of species. The tracer species
group is user-determined and may be empty in CGRID. Aqueous chemistry is dealt with solely
in the cloud processing, and currently aqueous species are not transported outside of the cloud
processing, therefore do not appear explicitly in CGRID. A subroutine call to CGRID_MAP
provides pointers to the locations of the species classes within CGRID. A process that deals only
with one of the classes (e.g. aerosols) can thus determine which part of CGRID it needs to
access.

EPA/600/R-99/030

18-5

18.2.3 Class Driver

Generally, each module within a class requires a “class-driver,” which is the top level subroutine
within the module - it is at the top of the call chain for that module. Exceptions for this paradigm
exist for the util, procan, phot, and aero_depv classes. The class-driver presents a fixed name
and calling interface to the driver class subroutine SCIPROC that calls all the science process
modules. The calling interface consists of a subroutine argument list containing CGRID, the
current scenario data and time, and a time step vector. Each class also contains a “no-operation”
module, if appropriate. The no-op module has the fixed name and call interface for that class,
but performs no calculations. When called, it merely returns control to SCIPROC.

The following algorithm illustrates the processing and call sequence used in a CMAQ model for
fractional time steps processed non-symmetrically with respect to the chemistry processes:

Load CGRID from initial data; set initial Date/Time
Get the TimeStep vector: TimeStep[1] = output time interval

TimeStep[2] = synchronization time interval
TimeStep[3] = horizontal advection time interval

Foreach output_time_step

Call Couple (CGRID, Date, Time, TimeStep)*

Foreach sync_step [in output time interval]
Call Horizontal_Advection (CGRID, Date, Time, TimeStep)
Call Vertical_Advection (CGRID, Date, Time, TimeStep)
Call Mass_Adjustment (CGRID, Date, Time, TimeStep)
Call Horizontal_diffusion (CGRID, Date, Time, TimeStep)
Call De-Couple (CGRID, Date, Time, TimeStep)*
Call Vertical_diffusion (CGRID, Date, Time, TimeStep)
Call Plume_in_Grid (CGRID, Date, Time, TimeStep)
Call Gas_Chemistry (CGRID, Date, Time, TimeStep)
Call Aerosol (CGRID, Date, Time, TimeStep)
Call Cloud (CGRID, Date, Time, TimeStep)
Advance Date/Time by synchronization time interval
Call Couple (CGRID, Date, Time, TimeStep)*

End Foreach sync_step

Call De-Couple (CGRID, Date, Time, TimeStep)*
Write Concentration File

End Foreach output_time_step

* Couple CGRID concentrations with, or de-couple CGRID from the air density × the
Jacobian of the computational grid. See Chapter 6 for a complete discussion on the
concept.

Not shown in the algorithm are processes that deal with source emissions (in either
Vertical_diffusion or Gas_chemistry), dry deposition (in Vertical_diffusion), and wet deposition
(in Cloud). Also not shown are calls to process analysis routines after each science process,
which compute the integrated process rates for that particular process. Such calls are also
embedded in science process modules that affect CGRID, such as emissions injection in either
the vertical diffusion process or gas chemistry. The Science Process Code Template in Section
18.8.3 below illustrates how these calls can be integrated within a module.

EPA/600/R-99/030

18-6

In order to maintain the Models-3/CMAQ modularity and data-independence, the science
process class-drivers must adhere to coding standards with regard to the calling interface, file
data I/O, and standardized, uniform domain and mechanism data within global include files. See
Section 18.5, below, and Chapter 15 for a more complete discussion on the use of global include
files. These coding standards have not been propagated to the level below the class-driver. At
the sub-module level there are no strict I/O or coding standards, however we offer suggestions to
facilitate the potential incorporation of a module into the Models-3 system in Section 18.8 below.

18.2.4 Synchronization Time Step

There are many different time scales that are important in modeling. The CCTM deals with four
levels of time stepping:

1. Output time step - the time interval for which output data is written to disk.

2. Synchronization time step - the time interval for which the science processes,
represented by science modules, are considered to run independently of the other
processes. This is the time interval during which no interaction with the other time-split
science processes needs to take place.

3. Advection time step - the time interval over which horizontal advection occurs. It may
be less than or the same as the synchronization time interval.

4. Local or internal time looping - a possibly variable time interval that subdivides the
synchronization time step and is dependent on the user’s implementation of a particular
algorithm.

There may also be some science processes that don’t fit into this type of time scale hierarchy.
The sub-grid cloud time step in CCTM for example, has a fixed lifetime that may span the
synchronization time interval.

In the CCTM the synchronization time step is essentially the time interval over which the
chemistry processes are considered to be time-split and independent of the other processes.

The proper relationship between the first three time steps listed above is determined by the
“ADVSTEP” algorithm. Based on a user-supplied output time step interval, and optionally an
upper and lower limit for the synchronization time step interval,1 the algorithm:

• Ensures the synchronization time interval evenly divides the output time interval.

• Ensures the synchronization interval to not be greater than the upper limit.

• Determines a horizontal advection time interval that ensures all horizontal advection
calculations satisfy a Courant condition with respect to the horizontal winds for each
output time step. See Chapter 7 for details about the Courant condition requirement.

1If these limits are not specified, the algorithm uses defaults of 900 and 300 seconds,
respectively.

EPA/600/R-99/030

18-7

• Attempts to establish a horizontal advection time interval as close to the synchronization
interval as possible, but evenly divides the synchronization interval.

• In case the Courant condition restriction forces an advection time interval to be less than
the lower synchronization interval limit, sets advection time intervals to be as close to the
lower limit as possible but still evenly divide2 the lower limit.

• If none of these criteria can be satisfied, reports the issue and aborts the execution.

18.3 Input/Output Applications Programming Interface

A model needs access to external data. Data access, including output to external files, is done at
the module level. The Models-3 I/O API [4] provides a standardized interface to external data
that enables a user to follow the object oriented design concept of encapsulation. For example,
all basic and some derived meteorological data are calculated outside the CCTM (see MCIP
documentation in Chapter 12, e.g.) and available to a module through calls to the Models-3 I/O
API library [4]. Thus the user can avoid the re-calculation of various meteorological variables
within subroutines using different algorithms and parameterizations to re-compute essentially the
same quantities, which may give rise to errors and modeling inconsistencies. It is expected that
the modules treat these I/O API data completely independently, not knowing or caring if files
have been opened or read by any other module. In particular, any subroutine within a module
can open an I/O API file. It is recommended that at least one routine within a module, preferably
the class-driver, should open any I/O API files that are required in the module.

In general, the I/O API provides the Models-3 user with a library containing both Fortran and C
routines, which manage all the necessary file manipulations for data storage and access. The
main requirement is that the user follows the I/O API conventions for data structures, naming
conventions, and representations of scenario date and time. The I/O API routines manage access
to the files in such a manner that data can be read or written flexibly, virtually in any order, and
freeing the user from being concerned with low level file manipulation details, such as the order
or format of file variables.

In addition, the I/O API routines can be used for both file storage and cross-media model
coupling using Parallel Virtual Machine (PVM) mailboxes.

For file storage and access, the I/O API, which is the standard data access library for Models-3,
is built on top of NCAR’s netCDF files [5]. NetCDF (network Common Data Form) is a library
that provides an interface for array-oriented data access. The netCDF library also defines a
machine-independent format for representing scientific data. Together, the interface, library, and
format support the creation, access, and sharing of scientific data. The netCDF software was
developed at the Unidata Program Center in Boulder, Colorado. The freely available source can
be obtained by anonymous FTP [5].

The I/O API provides a variety of data structure types for organizing the data, and a set of access
routines that offer selective direct access to the data in terms meaningful to the user.

2Strictly speaking, this means divides without remainder, not by a factor of two.

EPA/600/R-99/030

18-8

Since they are netCDF files, I/O API files share the following characteristics:

1. They are machine-independent and network-transparent. Files created on a Cray
Supercomputer can be read on a desktop workstation (or vice versa) either via NFS
mounting or FTP, with no data format translation necessary;

2. They are self-describing. That is, they contain headers that provide a complete set of
information necessary to use and interpret the data they contain;

3. They are direct access. A small subset of a large dataset may be accessed efficiently
without first reading through all the preceding data. This feature is mandatory in
visualization requiring rapid access of large datasets;

4. They are appendable. Data can be appended to a netCDF dataset along one dimension
without copying the dataset or redefining its structure. For example, the I/O API can add
more time step data to a previously created file; and

5. They are sharable. One writer and multiple readers may simultaneously access the same
netCDF file. This means, for example, that visualization tools can access the file and
display data while the file is being created by the model.

The I/O API has been designed to support a variety of data types used in the environmental
sciences, among them:

• Gridded data (e.g., concentration or meteorological fields);

• Grid-boundary data (for model boundary conditions);

• Scattered data (e.g., meteorology observations or source level emissions); and

• Sparse matrix data (a specialized data type used in an emissions model).

I/O API files support three different time step structures:

1. Time-stepped with regular time steps (e.g. hourly model output concentration fields or
twice-daily upper air meteorology observation profiles);

2. Time-independent (e.g. terrain height); and

3. Restart, which always maintains the last two time step records of output from a running
process as “even” and “odd.” The “odd” is available for restart in case of a crash while
the “even” step is being written, and vice versa. Restart data does not consume an
inordinate amount of disk space with only two time steps worth of data at all times.

The I/O API provides automated built-in mechanisms to support production and application
requirements for dataset histories and audit trails:

• Identifiers of the program execution that produced the file.

EPA/600/R-99/030

18-9

• Description of the study scenario in which the file was generated.

The I/O API also contains an extensive set of utility routines for manipulating dates and times,
performing coordinate conversions, storing and recalling grid definitions, sparse matrix
arithmetic, etc. There are a variety of related programs that perform various analysis or data-
manipulation tasks, including statistical analysis, file comparison, and data extraction. Section
18.8.3 below illustrates the use of some of these utilities in coding practice, and the web site [5]
provides background materials, a user manual, and a tutorial.

18.4 Code Configuration Management

18.4.1 The Need

Faced with a large and growing community that uses and develops a wide variety of programs,
modules and codes, it is imperative to systematically manage the cross-community access to this
software. Typically, successful management of software involves:

• A repository - a place where all of the public code resides;

• The concept of archived code - codes that have been deposited into the repository in such
a manner that anyone can extract the exact code at a later time. This involves some kind
of transformation program to maintain master copies of the codes with embedded change
tables;

• The concept of revision control - archiving codes results in modifying the tags or unique
revision identifiers in the change tables in the master copies in order to recover the exact
code at a later date; and

• The concept of released code - codes that have reached some state of maturity and have
been designated with some kind of “released” status. They can be used with reasonable
expectation of reliability.

The paradigm used employs the following scenario.

1. A user modifies or develops code. The code may be one subroutine or many, possibly
comprising whole science models. The code may originate from “scratch,” or be
extracted from the repository and modified.

2. After testing or reaching a point of being satisfied with his/her results, he/she decides to
save it in the repository so that others can have access to it.

3. Some archived codes may still be in an experimental, or development, state while others
may be reasonably stable and more completely tested. The latter may be designated as
“released.” There is no enforceable means to control access based on an experimental or
released state. The community will have and should have access indiscriminately, well
aware that using development state code is risky.

EPA/600/R-99/030

18-10

4. As the user continues to work with the codes, he/she may make enhancements or
discover and fix errors. The upgrades are then installed in the repository, which
automatically assigns unique revision identifiers.

5. The repository is located where it is conveniently accessible to all pertinent users, and it
is maintained by an administrator who sets and enforces general access rules.

18.4.2 The Tool

There are many configuration management tools both free and commercially available. We
chose The Concurrent Versions System (CVS) [1] mainly because of its versatility. CVS
controls the concurrent editing of sources by several users working on releases built from a
hierarchical set of directories. CVS uses the Revision Control System (RCS) [2] as the base
system. Other reasons that CVS was an attractive choice include:

• It works on virtually all UNIX platforms and many PCs;

• It is publicly available and free;

• CVS is a state-of-the-art system, constantly being improved; and

• MM5 codes are managed by CVS, and MM5 is a primary meteorology model for the
CMAQ system.

From the UNIX man pages (online manual):

CVS is a front end to the Revision Control System (RCS) that extends the notion
of revision control from a collection of files in a single directory to a hierarchical
collection of directories consisting of revision controlled files. These directories
and files can be combined together to form a software release. CVS provides the
functions necessary to manage these software releases and to control the
concurrent editing of source files among multiple software developers [emphasis
added].

The Revision Control System (RCS) manages multiple revisions of files. RCS
automates the storing, retrieval, logging, identification, and merging of revisions.

Another widely used source code management system is the Source Code Control System
(SCCS), which is usually distributed with UNIX systems. The main note is that RCS and SCCS
act on files only, while CVS operates on projects. Working with entire projects works better and
easier with CVS. Multi-developer project development works better with CVS as well. CVS
supports a client/server mode of operation that can be very useful. CVS also allows
customization by adding hooks so that local scripts or programs can be called when executing
various CVS commands. This can be useful to force naming conventions of tags, or reference to
bug-tracking software, etc. Thus CVS adds power and features that are attractive for the
ModelsS-3/CMAQ system.

EPA/600/R-99/030

18-11

18.4.3 The Repository

The repository structure, that is, the UNIX directory hierarchy, follows the class/module
organization discussed above in Section 18.2. The repository is actually divided into many
repositories, one for each generic model. This division makes it easier to maintain the
class/module organization that is important for the model building operation described below in
Section 18.5.

CVS allows for the use of a “modules” file3, which enables a user to easily check out or extract a
complete CMAQ module. For example, a module might be checked out by a user to make code
modifications, and complete modules are checked out during the model building operation.

The following shows a symbolic CVS UNIX directory tree that represents the current structure
for the CCTM:

3The terminology is unfortunate. The CVS modules file has no intrinsic relationship with the
CMAQ classes/module design implementation.

EPA/600/R-99/030

18-12

...CCTM -+-> CVSROOT ---+-> CVS administrative files
 | |
 \-> src -------+-> driver --+-------> ctm ------+-> RCS files
 |
 +-> hadv ---+---> hadv_noop ---+-> RCS files
 | +---> hbot --------+-> RCS files
 | +---> hppm --------+-> RCS files
 |
 +-> vadv ---+---> vadv_noop ---+-> RCS files
 | +---> vbot --------+-> RCS files
 | +---> vppm --------+-> RCS files
 |
 +-> vdiff --+---> vdiff_noop --+-> RCS files
 | +---> eddy --------+-> RCS files
 |
 +-> chem ---+---> chem_noop ---+-> RCS files
 | +---> smvgear -----+-> RCS files
 | +---> qssa --------+-> RCS files
 |
 +-> phot ---+---> phot_noop ---+-> RCS files
 | +---> phot --------+-> RCS files
 |
 +-> aero ---+---> aero_noop ---+-> RCS files
 | +---> aero --------+-> RCS files
 |
 +-> couple -+---> gencoor -----+-> RCS files
 |
 +-> cloud --+---> cloud_noop --+-> RCS files
 | +---> cloud_radm --+-> RCS files
 |
 +-> procan -+---> pa ----------+-> RCS files
 |
 +-> hdiff --+---> hdiff_noop --+-> RCS files
 | +---> unif --------+-> RCS files
 |
 +-> init ---+---> init --------+-> RCS files
 |
 +-> util ---+---> util --------+-> RCS files
 |
 +-> aero_depv +-> aero_depv_noop +-> RCS files
 | +-> aero_depv -+-> RCS files
 |
 +-> adjcon -+---> adjcon_noop -+-> RCS files
 | \---> denrate -----+-> RCS files
 |
 \-> ping ---+---> ping_noop ---+-> RCS files
 +---> ping_qssa ---+-> RCS files
 \---> ping_smvgear +-> RCS files

The symbolic tree is shown relative to the subdirectory in the repository named for the CCTM
model. Similar trees exist for each of the generic models. The RCS files are the revision control
history files that contain the change tables to reconstruct the actual source code according to a
specific revision identifier. Also note that the tree closely follows the organization of classes and
modules for the CCTM described in Table 18-1, and contains alternate modules within the
classes. In particular, most classes contain a “no-operation” (_noop) module that allows a user to
essentially turn off that particular science process modeling. This is useful, for example in
debugging, where rapid turn-around is important, and a computationally demanding module that
is not needed can be bypassed.

EPA/600/R-99/030

18-13

18.5 How a Model is Constructed

18.5.1 Object Oriented Concepts

To make the Models-3/CMAQ system robust and flexible, object oriented concepts were
incorporated into the design of the CMAQ system. Incorporating these ideas into the design
helps avoid introducing errors when code modifications are necessary. Additionally, the system
is capable of easy and efficient modification, allowing the user to quickly make models for
different applications.

The implementation language for CMAQ is Fortran 77, which imposes limits on how far one can
go in terms of object oriented design. In particular, since Fortran is a static language, objects
cannot be instantiated dynamically; they must be declared explicitly in the source code to be
created at compile time. However, to encourage a user community that will be contributing code
for future enhancements, every attempt has been made to adhere to the Fortran 77 standard. In
the future, the use of other implementation languages such as Fortran 90 will be considered.

18.5.2 Global Name Table Data

In order to implement modularity and data-independence, we have employed design ideas that
draw heavily from the object-oriented concept of inheritance and code re-use. The data
structures in the codes that deal with the domain sizes, chemical mechanism, I/O API, logical file
names, general constants, and CGRID pointers are determined by Fortran declarations in data
and parameter statements that are created through the Models-3 system. These data structures
pertain to a particular application (domain, mechanism, etc.) and are meant to apply globally, not
only to one particular CCTM through all its subroutines, but also to all the models that supply
data to the CCTM for that application. These data structures are contained in Fortran INCLUDE
files, which are essentially header files, included in the declaration sections near the top of the
Fortran code source files. The inclusion of these source files is made automatic by using a
generic string that represents the include file and which is parsed and expanded to the actual
include file during a pre-processing stage in the compilation. The Fortran global include files
contain name tables that define:

1. The computational grid domain;

2. The chemical mechanism;

3. The I/O API interface, including logical file names;

4. The global modeling constants; and

5. Other constants or parameters that apply across the model.

In order to effect the implementation of the include files into the code, a special compiling
system, m3bld, has been developed [3], which reads a configuration file that, based on the
application, completely determines the model executable to be built. The ASCII configuration
file can be generated either by the Models-3 system or by the user following a few, simple
syntactical rules illustrated below. For additional details, the reader is referred to Chapter 15.

EPA/600/R-99/030

18-14

In addition to the global include files, the configuration file contains module commands that tell
m3bld to extract the codes for that module from the model code repository for compilation.

18.5.3 Build Template

The following exhibit is an example of a configuration file that m3bld would use to build a
model executable: (The numerals at the left-hand margin are labels for the legend and are not
part of the configuration file. The “//” represents a non-parsed, comment line.)

Example Configuration File
(1) model TUTO_r4y;

(2) cpp_flags “-Demis_vdif “;
(2) f77_flags “-e -fast -O4 -xtarget=ultra2 -xcache=16/32/1:1024/64/1”;
(2) link_flags “-e -fast -O4 -xtarget=ultra2”;

(3) libraries “-L/home/models3/tools/IOAPI/release/m3io/lib/SunOS5 -lm3io
 -L/home/models3/tools/netCDF/SunOS5 -lnetcdf”;

(4) global verbose;

(5) include SUBST_BLKPRM /work/rep/include/release/BLKPRM_500.EXT;
(5) include SUBST_CONST /work/rep/include/release/CONST3_RADM.EXT;
(5) include SUBST_FILES_ID /work/rep/include/release/FILES_CTM.EXT;
(5) include SUBST_EMPR_VD /work/rep/include/release/EMISPRM.vdif.EXT;
(5) include SUBST_EMPR_CH /work/rep/include/release/EMISPRM.chem.EXT;
(5) include SUBST_IOPARMS /work/rep/include/release/PARMS3.EXT;
(5) include SUBST_IOFDESC /work/rep/include/release/FDESC3.EXT;
(5) include SUBST_IODECL /work/rep/include/release/IODECL3.EXT;
(5) include SUBST_XSTAT /work/rep/include/release/XSTAT3.EXT;
(6) include SUBST_COORD_ID /work/yoj/tgt/BLD/COORD.EXT;
(6) include SUBST_HGRD_ID /work/yoj/tgt/BLD/HGRD.EXT;
(6) include SUBST_VGRD_ID /work/yoj/tgt/BLD/VGRD.EXT;
(6) include SUBST_RXCMMN /work/yoj/tgt/BLD/RXCM.EXT;
(6) include SUBST_RXDATA /work/yoj/tgt/BLD/RXDT.EXT;
(6) include SUBST_GC_SPC /work/yoj/tgt/BLD/GC_SPC.EXT;
(6) include SUBST_GC_EMIS /work/yoj/tgt/BLD/GC_EMIS.EXT;
(6) include SUBST_GC_ICBC /work/yoj/tgt/BLD/GC_ICBC.EXT;
(6) include SUBST_GC_DIFF /work/yoj/tgt/BLD/GC_DIFF.EXT;
(6) include SUBST_GC_DDEP /work/yoj/tgt/BLD/GC_DDEP.EXT;
(6) include SUBST_GC_DEPV /work/yoj/tgt/BLD/GC_DEPV.EXT;
(6) include SUBST_GC_ADV /work/yoj/tgt/BLD/GC_ADV.EXT;
(6) include SUBST_GC_CONC /work/yoj/tgt/BLD/GC_CONC.EXT;
(6) include SUBST_GC_G2AE /work/yoj/tgt/BLD/GC_G2AE.EXT;
(6) include SUBST_GC_G2AQ /work/yoj/tgt/BLD/GC_G2AQ.EXT;
(6) include SUBST_GC_SCAV /work/yoj/tgt/BLD/GC_SCAV.EXT;
(6) include SUBST_GC_WDEP /work/yoj/tgt/BLD/GC_WDEP.EXT;
(6) include SUBST_AE_SPC /work/yoj/tgt/BLD/AE_SPC.EXT;
(6) include SUBST_AE_EMIS /work/yoj/tgt/BLD/AE_EMIS.EXT;
(6) include SUBST_AE_ICBC /work/yoj/tgt/BLD/AE_ICBC.EXT;
(6) include SUBST_AE_DIFF /work/yoj/tgt/BLD/AE_DIFF.EXT;
(6) include SUBST_AE_DDEP /work/yoj/tgt/BLD/AE_DDEP.EXT;
(6) include SUBST_AE_DEPV /work/yoj/tgt/BLD/AE_DEPV.EXT;
(6) include SUBST_AE_ADV /work/yoj/tgt/BLD/AE_ADV.EXT;
(6) include SUBST_AE_CONC /work/yoj/tgt/BLD/AE_CONC.EXT;

EPA/600/R-99/030

18-15

Example Configuration File
(6) include SUBST_AE_A2AQ /work/yoj/tgt/BLD/AE_A2AQ.EXT;
(6) include SUBST_AE_SCAV /work/yoj/tgt/BLD/AE_SCAV.EXT;
(6) include SUBST_AE_WDEP /work/yoj/tgt/BLD/AE_WDEP.EXT;
(6) include SUBST_NR_SPC /work/yoj/tgt/BLD/NR_SPC.EXT;
(6) include SUBST_NR_EMIS /work/yoj/tgt/BLD/NR_EMIS.EXT;
(6) include SUBST_NR_ICBC /work/yoj/tgt/BLD/NR_ICBC.EXT;
(6) include SUBST_NR_DIFF /work/yoj/tgt/BLD/NR_DIFF.EXT;
(6) include SUBST_NR_DDEP /work/yoj/tgt/BLD/NR_DDEP.EXT;
(6) include SUBST_NR_DEPV /work/yoj/tgt/BLD/NR_DEPV.EXT;
(6) include SUBST_NR_ADV /work/yoj/tgt/BLD/NR_ADV.EXT;
(6) include SUBST_NR_N2AE /work/yoj/tgt/BLD/NR_N2AE.EXT;
(6) include SUBST_NR_N2AQ /work/yoj/tgt/BLD/NR_N2AQ.EXT;
(6) include SUBST_NR_SCAV /work/yoj/tgt/BLD/NR_SCAV.EXT;
(6) include SUBST_NR_WDEP /work/yoj/tgt/BLD/NR_WDEP.EXT;
(6) include SUBST_TR_SPC /work/yoj/tgt/BLD/TR_SPC.EXT;
(6) include SUBST_TR_EMIS /work/yoj/tgt/BLD/TR_EMIS.EXT;
(6) include SUBST_TR_ICBC /work/yoj/tgt/BLD/TR_ICBC.EXT;
(6) include SUBST_TR_DIFF /work/yoj/tgt/BLD/TR_DIFF.EXT;
(6) include SUBST_TR_DDEP /work/yoj/tgt/BLD/TR_DDEP.EXT;
(6) include SUBST_TR_DEPV /work/yoj/tgt/BLD/TR_DEPV.EXT;
(6) include SUBST_TR_ADV /work/yoj/tgt/BLD/TR_ADV.EXT;
(6) include SUBST_TR_T2AQ /work/yoj/tgt/BLD/TR_T2AQ.EXT;
(6) include SUBST_TR_SCAV /work/yoj/tgt/BLD/TR_SCAV.EXT;
(6) include SUBST_TR_WDEP /work/yoj/tgt/BLD/TR_WDEP.EXT;

 // Process Analysis / Integrated Reaction Rates processing
(6) include SUBST_PACTL_ID /work/yoj/tgt/BLD/PA_CTL.EXT;
(6) include SUBST_PACMN_ID /work/yoj/tgt/BLD/PA_CMN.EXT;
(6) include SUBST_PADAT_ID /work/yoj/tgt/BLD/PA_DAT.EXT;

(7) module ctm release ;

(7) module init release ;

 // options are denrate and adjcon_noop
(7) module denrate release ;

(7) module gencoor release ;
 // options are hbot and hadv_noop
(7) module hppm release ;

 // options are vbot and vadv_noop
(7) module vppm release ;

 // options are phot and phot_noop

(7) module phot release ;

 // options are ping_qssa, ping_smvgear and ping_noop
 (7) module ping_qssa release ;

 // options are qssa, smvgear and chem_noop
(7) module qssa release ;

 // aerosols

EPA/600/R-99/030

18-16

Example Configuration File
(7) module aero release ;
 // aerosol dep vel
(7) module aero_depv release ;

 // options are eddy and vdiff_noop
(7) module eddy release ;

 // options are const and hdiff_noop
(7) module unif release ;

 // options are cloud_radm and cloud_noop
(7) module cloud_radm release ;

 // options are pa and pa_noop, which requires the replacment of the three
 // global include files with their pa_noop counterparts
(7) module pa release ;

(7) module util release ;

Legend:
(1) - Model name definition. This string is what the model executable will
be named.
(2) - The C pre-processor, Fortran compiler and link flags. The flags
specified indicate that the model is to be compiled with the option to input
emissions in the vertical diffusion processing, and to compile and link on a
Sun Sparc, Ultra-30 workstation.
(3) - I/O API and netCDF object libraries to be linked. The format is
virtually identical to that of a UNIX make command.
(4) - m3bld flag: one of many options. verbose indicates report all actions.
Other options are:

• compile_all - force compile, even if object files are current
• clean_up - remove all source files upon successful completion
• no_compile - do everything except compile
• no_link - do everything except link
• one_step - compile and link in one step
• parse_only - checks config file syntax
• show_only - show requested commands but doesn’t execute them

(5), (6) - global include files. The syntax is:
 include internal-string full-path-name.
Every routine that requires a specific include file must contain a Fortran
include statement using the internal-string (see Section 18.3 for examples).
 (5) - “fixed” global include files. The fixed include files have been
constructed outside of the Models-3 framework and contain global data not
directly related to the domain or chemical mechanism such as modeling
constants and file logical names.
(6) - The Models-3 framework automatically generates all the include files
labeled (6). The user supplies information through the Models-3 Science
Manager that determines the data in these include files. These data define
the complete problem domain for a particular CMAQ application. See Chapter
15 for a complete discussion.
(7) - The module name to extract from the model code repository and an
optional revision flag to select a particular module version. The syntax is:
 module module name revision flag.

EPA/600/R-99/030

18-17

Example Configuration File

For additional information on this implementation, the reader is referred to the Model Building
Tool described in Fine et al. [3].

18.6 How a Model is Executed

In order to run a model executable, various UNIX environment variables must be set in the shell
that invokes the execute command. Generally, these involve the modeling scenario start date and
time, the run duration, the output time step interval, various internal code flags that differ among
the models, and all the input and output logical, or symbolic file names (see Section 15.4.3 in
Chapter 15). There are various ways by which external file names can be referenced in the code,
but the most general across all UNIX platforms is to link them by means of environment
variables. There are I/O API utility functions that allow a user easy access to these variables
within the code, making such accesses generic and portable.

An additional feature that is provided through the I/O API is to declare a file “volatile” by
appending a -v flag in the shell’s declaration for the environment variable. By doing this, the I/O
API will cause the netCDF file to update (sync) its disk copy after every write and thereby
update the netCDF header. Otherwise, netCDF file headers are not updated until the files are
closed. This is useful, for example, to allow a user to analyze an open netCDF file using
visualization tools while the model is executing. It is also useful in case of a system crash. A
CCTM model can be restarted at the scenario time step after the last successful write using the
aborted output file as the input initial data.

18.7 Using the Models-3 Framework

The Models-3 framework simplifies the model building and model execution tasks, especially if
key objects have been pre-defined. Thus if a user is conducting a study that uses the same
domain or chemical mechanism, but uses different code options, e.g., then rebuilding and re-
executing using the framework makes conducting the study very straightforward. Other
examples where the framework greatly simplifies operational tasks would be where a model is to
be applied on different domains, or for control strategies in which the only thing that changes are
the emissions input files. A knowledgeable user is still able to build and execute model
applications outside the framework. In fact, one can easily run model applications using
executables and UNIX scripts generated by the framework.

In general, in order to build a model within the framework, the coordinate system, horizontal grid
and vertical layer definitions, and chemical mechanism must be specified. This is done within
the Models-3 Science Manager component. If objects required for a particular application, such
as a coordinate system specification, are already defined, then the user needs only to select those
objects. The Configuration File Manager, an additional subcomponent within the Science
Manager, allows a user to control the module definitions and fixed 4 include files that go into the

4not generated by the framework

EPA/600/R-99/030

18-18

configuration file used to build the model. Also the user can specify compiling and linking flags
related to a specific platform on which the model is to be executed.

With all required Models-3 objects defined, the task of building a model is made simple using
the Models-3 component, Model Builder. It’s important to note that as users develop models, the
set of objects will grow to become a rich pool from which to select for a particular application.
The Models-3 framework was designed to allow extensive re-use of objects. Model Builder
generates all the “non-fixed” include files, then builds a model, linking in the include files
including the user-specified fixed ones. See the section above for the include file definitions.
Perhaps one of the most useful features of the Models-3 framework is the ability to graphically
set up and execute single or multiple model executions with automatic data registration. This
allows a user to carefully control the order of model executions and the management of all the
input and output data. The Models-3 component that performs this function is the Study Planner.
Study Planner allows a user to specify input data sets, executables, and UNIX environment
variables, and to initiate (possibly multiple) model runs.

18.8 Conformant Code

18.8.1 Thin Interface

As mentioned above in section 18.5.1 , the Models-3/CMAQ system was designed to be robust
and flexible with respect to the interchange of modules and the elimination of cross-module data
dependencies. Consequently, the concept of a “thin interface” has been employed in the design,
which applies principally to the class-drivers. At the least, the thin interface implementation
implies the following requirements:

• Eliminate global memory references (across modules). This implies no common blocks
across modules, no hidden data paths, no “back doors”;

• Each module reads and interpolates its required data independently. The I/O API helps to
ensure this kind of data independence; and

• Standardized argument list (CGRID, Date, Time, TimeStep) for the class-driver, as
described in the section above.

These requirements attempt to incorporate the object-oriented idea of encapsulation in the
Models-3/CMAQ design. The following quotation is from Rumbaugh et al. [7]:

Encapsulation (also information hiding) consists of separating the external aspects
of an object, which are accessible to other objects, from the internal
implementation details of the object, which are hidden from other objects.
Encapsulation prevents a program from becoming so interdependent that a small
change has massive ripple effects. The implementation of an object can be
changed without affecting the applications that use it [emphasis added].

The encapsulation design makes the CMAQ system safer and enables the transaction processing,
plug&play capability. This design also makes it easier for a user to trace data and usage within a
module, particularly at the class-driver level.

EPA/600/R-99/030

18-19

18.8.2 Coding Rules

In order to maintain the object oriented concepts implemented in the CMAQ system design, we
have established a small set of coding rules that apply for those that develop CMAQ science and
affect the low-level design of the models. We have developed standards to control data
dependencies at the class-driver level, but we have not propagated these coding standards to the
sub-module level.

1. The models are generally coded in Fortran (Fortran-77 conventions are used). It is
possible to link in subroutines written in the C language, although this has not been done
within the current CMAQ implementation.

2. The modules must be controlled by a top-level class-driver routine, whose calling
arguments must be the computational concentration grid array, CGRID, the current
scenario data and time, and the controlling time step vector. See the section above.

3. The class-driver is also responsible for any temporal integration required within the
module. (The time steps for process integration at the module level are usually shorter
than those of the CCTM synchronization time step.)

4. Any reads and writes for the module should be done at the level of the class-driver
routine. Although not absolutely necessary, this is strongly suggested because it is
usually much easier to control the timing of the data accesses at the highest level of the
module where the current scenario date and time are known.

5. Use the IMPLICIT NONE Fortran declaration to maintain some control on typographic
errors and undefined variables. Although not standard Fortran-77, the use of IMPLICIT
NONE forces the developer to declare all internal variables.

6. Use the global include files for domain definitions, chemical mechanism data, and other
data where available.

7. Use the I/O API for external data references where appropriate. For an illustration of
these rules, the reader is referred to the code template below.

At the sub-module level there are no strict I/O or coding standards. Here it is envisioned that
individual researchers/programmers use their own coding styles for their algorithms. However
the following suggestions are offered to facilitate the potential incorporation of a module into the
CMAQ system:

• It is expected that MKS units are used for input and output variables, as these units have
been standardized throughout the CMAQ system. Within a sub-module subroutine
whatever units are most convenient can be used. However, the developer must be
responsible for any unit conversions to MKS for input and output, and thus avoid any
potential errors.

• For efficiency and performance considerations, operations may need to be done on
groups of grid cells (a block of cells) at a time. If there are N cells in the block and the

EPA/600/R-99/030

18-20

entire domain contains M cells, then the entire domain can be decomposed into M/N
blocks. We have used N=500. For operations in the horizontal (x,y), the cell constraint
becomes X × Y ≤ N, where X= number of cells in the x-direction, and Y= number of cells
in the y-direction. For operations in both the horizontal and vertical, the constraint
becomes X × Y × Z ≤ N, where Z= number of cells in the z-direction. There may be some
operations, such as for some horizontal advection schemes, where this decomposition
into blocks becomes more difficult or impossible.

18.8.3 Science Process Code Template

The following demonstrates what a science process class-driver Fortran 77 subroutine might look
like. We recommend that a code developer follows this template, where appropriate, to get
maximum benefit from the design concepts implemented in the Models-3/CMAQ system. This
template is generic and attempts to show most, if not all the features available. Some class-
drivers and most other sub-programs within a module may not have, nor require, most or any of
these features. (The numerals at the left-hand margin are for the legend and are not part of the
text, and the text within “< >“ indicates code not included.)

Example of Science Process Class-driver
(1) SUBROUTINE VDIFF SUBST_GRID_ID (CGRID, JDATE, JTIME, TSTEP)
(2) C------------------------------------
(2) C Function:
(2)
(2) C Preconditions:
(2)
(2) C Subroutines and Functions Called:
(2)
(2) C Revision History:
(2) C------------------------------------
(3) IMPLICIT NONE

(4) INCLUDE SUBST_HGRD_ID ! horizontal dimensioning parameters
(4) INCLUDE SUBST_VGRD_ID ! vertical dimensioning parameters

(5) INCLUDE SUBST_GC_SPC ! gas chemistry species table
(5) INCLUDE SUBST_GC_EMIS ! gas chem emis surrogate names and map table
(5) INCLUDE SUBST_GC_DEPV ! gas chem dep vel surrogate names and map table
(5) INCLUDE SUBST_GC_DDEP ! gas chem dry dep species and map table
(5) INCLUDE SUBST_GC_DIFF ! gas chem diffusion species and map table

(5) INCLUDE SUBST_AE_SPC ! aerosol species table
(5) INCLUDE SUBST_AE_DEPV ! aerosol dep vel surrogate names and map table
(5) INCLUDE SUBST_AE_DDEP ! aerosol dry dep species and map table
(5) INCLUDE SUBST_AE_DIFF ! aerosol diffusion species and map table

(5) INCLUDE SUBST_NR_SPC ! non-reactive species table
(5) INCLUDE SUBST_NR_EMIS ! non-react emis surrogate names and map table
(5) INCLUDE SUBST_NR_DEPV ! non-react dep vel surrogate names and map table
(5) INCLUDE SUBST_NR_DDEP ! non-react dry dep species and map table
(5) INCLUDE SUBST_NR_DIFF ! non-react diffusion species and map table

(5) INCLUDE SUBST_TR_SPC ! tracer species table
(5) INCLUDE SUBST_TR_EMIS ! tracer emis surrogate names and map table
(5) INCLUDE SUBST_TR_DEPV ! tracer dep vel surrogate names and map table
(5) INCLUDE SUBST_TR_DDEP ! tracer dry dep species and map table
(5) INCLUDE SUBST_TR_DIFF ! tracer diffusion species and map table

(6) #ifdef emis_vdif
(6) INCLUDE SUBST_EMPR_VD ! emissions processing in vdif
(6) #else
(6) INCLUDE SUBST_EMPR_CH ! emissions processing in chem

EPA/600/R-99/030

18-21

Example of Science Process Class-driver
(6) #endif
(7) INCLUDE SUBST_PACTL_ID ! PA control parameters
(7) INCLUDE SUBST_CONST ! constants
(7) INCLUDE SUBST_FILES_ID ! file name parameters
(7) INCLUDE SUBST_IOPARMS ! I/O parameters definitions
(7) INCLUDE SUBST_IOFDESC ! file header data structure
(7) INCLUDE SUBST_IODECL ! I/O definitions and declarations
(7) INCLUDE SUBST_XSTAT ! M3EXIT status codes
(4) INCLUDE SUBST_COORD_ID ! coordinate and domain definitions (req IOPARMS)

(8) C Arguments:
(8)
(8) REAL CGRID(NCOLS,NROWS,NLAYS,*) ! concentrations
(8) INTEGER JDATE ! current model date, coded YYYYDDD
(8) INTEGER JTIME ! current model time, coded HHMMSS
(8) INTEGER TSTEP(3) ! time step vector (HHMMSS)
(8) ! TSTEP(1) = local output step
(8) ! TSTEP(2) = sciproc sync. step (chem)
(8) ! TSTEP(3) = advection time step

(9) C Parameters:
(9) < >
(10) C External Functions not previously declared in IODECL3.EXT:
(10)
(10) INTEGER SECSDIFF, SEC2TIME, TIME2SEC
(10) EXTERNAL SECSDIFF, SEC2TIME, TIME2SEC

(11) C File variables:
(11) < >
(12) C Local variables:
(12) < >
(13) IF (FIRSTIME) THEN
(13)
(13) FIRSTIME = .FALSE.
(13)
(13) LOGDEV = INIT3()
(13)
(13) C Open the met files:
(13)
(13) IF (.NOT. OPEN3(MET_CRO_3D, FSREAD3, PNAME)) THEN
(13) XMSG = ‘Could not open ‘// MET_CRO_3D // ‘ file’
(13) CALL M3EXIT(PNAME, JDATE, JTIME, XMSG, XSTAT1)
(13) END IF
(13)
(13) < open other met files >
(13)
(13) C Open Emissions files:
(13)
(13) < do other intialization or operations that need be done only once >
(13)
(13) END IF ! if firstime

(14) C set file interpolation to middle of time step
(14)
(14) MDATE = JDATE
(14) MTIME = JTIME
(14) MSTEP = TIME2SEC(TSTEP(2))
(14) CALL NEXTIME (MDATE, MTIME, SEC2TIME(MSTEP / 2))

(15) C read&interpolate met data
(15)
(15) VNAME = ‘DENSA_J’
(15) IF (.NOT. INTERP3(MET_CRO_3D, VNAME, PNAME,
(15) & MDATE, MTIME, NCOLS*NROWS*NLAYS,
(15) & RRHOJ)) THEN
(15) XMSG = ‘Could not interpolate DENSA_J from ‘ // MET_CRO_3D
(15) CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
(15) END IF
(15)

EPA/600/R-99/030

18-22

Example of Science Process Class-driver
(15) < do other reads >
(15)
(15) C read&interpolate deposition velocities
(15)
(15) < do operations >
(15)
(15) C read&interpolate emissions
(15)
(15) CALL RDEMIS (MDATE, MTIME, NCOLS, NROWS, EMISLYRS, NEMIS, EM_TRAC,
(15) & VDEMIS)
(15)
(16) IF (LIPR) CALL PA_UPDATE_EMIS (‘VDIF’, VDEMIS, JDATE, JTIME, TSTEP)

 < do other operations >

(17) CALL EDYINTB SUBST_GRID_ID (EDDYV, DT, JDATE, JTIME, TSTEP(2))

(18) DO 345 R = 1, NROWS
(18) DO 344 C = 1, NCOLS

 < do operations >

(19) DO 301 N = 1, NSTEPS(C,R)

 < do operations >

(19) 301 CONTINUE ! end time steps loop
(18) 344 CONTINUE ! end loop on col C
(18) 345 CONTINUE ! end loop on row R

(20) C If last call this hour: write accumulated depositions:
(20)
(20) WSTEP = WSTEP + TIME2SEC(TSTEP(2))
(20) IF (WSTEP .GE. TIME2SEC(TSTEP(1))) THEN
(20) MDATE = JDATE
(20) MTIME = JTIME
(20) CALL NEXTIME(MDATE, MTIME, TSTEP(2))
(20) WSTEP = 0
(20)
(20) IF (.NOT. WRITE3(CTM_DRY_DEP_1,
(20) & ALLVAR3, MDATE, MTIME, DDEP)) THEN
(20) XMSG = ‘Could not write ‘ // CTM_DRY_DEP_1 // ‘ file’
(20) CALL M3EXIT(PNAME, MDATE, MTIME, XMSG, XSTAT1)
(20) END IF
(20)
(20) WRITE(LOGDEV, ‘(/5X, 3(A, :, 1X), I8, “:”, I6.6)’)
(20) & ’Timestep written to’, CTM_DRY_DEP_1,
(20) & ’for date and time’, MDATE, MTIME
(20)
(16) IF (LIPR) CALL PA_UPDATE_DDEP (‘VDIF’, DDEP, JDATE, JTIME, TSTEP)
(20)
(20) < do other operations >
(20)
(20) END IF

(21) RETURN
(21) END

 Legend:

(1) - Class-driver subroutine internal name. Note the calling argument list. It is fixed for
class-drivers. The string “SUBST_GRID_ID” is used for developing run-time nesting applications,
which has not been fully implemented in the current version. By specifying subroutine names
associated with a particular nest and using corresponding domain include files for that
subroutine, it is possible to set up a multi-nest application. The details have not been
discussed because this kind of nesting has not been implemented in the current release of the
Models-3/CMAQ system.
(2) - Header comments. Highly recommended for internal documentation.
(3) - Highly recommended for Fortran. IMPLICIT NONE will catch typo’s and other undeclared

EPA/600/R-99/030

18-23

Example of Science Process Class-driver
variable errors at compile time.
(4) - Domain array dimensioning and looping global variables, e.g. NCOLS, NROWS, NLAYS.
(5) - Chemical mechanism array dimensioning and looping global variables.
(6) - C Preprocessor flags that determine which emissions control dimensioning and looping
variables are compiled.
(7) - Other global array dimensioning and looping global variables including those for the I/O
API. The logical variable LIPR is defined in the SUBST_PACTL_ID include file for use at lines
labeled (16).
(8) - Declarations for the argument list (standardized).
(9) - Declarations and PARAMETER statements for local Fortran parameters.
(10) - Declarations for external functions not previously declared.
(11) - Declarations for arrays to hold external file data.
(12) - Declarations for local variables.
(13) - Code section for subroutine initialization and for any local data that need not be set at
every entry into the subroutine. Such data would require a SAVE statement in the declarations.
For example FIRSTIME is initialized to .TRUE. in the local variables section (12).
(14) - Illustrates using an I/O API function to set file interpolation time.
(15) - Read accesses from I/O API files using the I/O API time-interpolation function.
(16) - Call to process analysis routine to obtain data for the optional integrated process rates
function.
(17) - Illustrates call to another science process within the module.
(18) - Main computational loop over the horizontal grid.
(19) - Time step loop over sub-synchronization time step intervals.
(20) - Illustrates writing to an I/O API file within a module.
(21) - Subroutine end

18.8.4 Robustness and Computational Efficiency

Scientists, while working in their discipline, are generally not interested in the physical situations
that don’t significantly affect the phenomena they are studying and modeling. Typically, the
scientist works with box models, and uses specialized data to test hypotheses, parameterizations
and numerical schemes. The focus is to generate new results based on output from these
relatively simple models. In trying to integrate these codes into a more general grid model,
problems may arise when modeling simulations carry their formulations into regimes not
explored in initial studies, therefore not properly accounted for in the grid model. The scientist
who is developing codes that may go into a grid model should be cognizant of these issues and
should make every effort to make the codes robust.

Another issue is code efficiency. In order to handle the pathological situations, codes like these
may become inefficient, spending many cycles dealing with the “off-problem” cases. A good
example is solving for the roots of a cubic polynomial whose coefficients, depending closely on
the locally modeled physics, may range over broad values. So, in addition to robustness,
attention should be paid to code performance. As the science improves in environmental
modeling, this usually translates into increased computational complexity. Although hardware
performance is continually improving, it cannot keep pace with the computational demands of
new science developments. Not typically the main interest of the science developer, software
performance is nevertheless a critical issue and must be addressed. Otherwise scientifically
sound models will not be of much general use if they take an inordinate amount of time to
execute.

EPA/600/R-99/030

18-24

18.9 Conclusion

The CMAQ system has been designed and implemented in such a way that its integration into
Models-3 allows access to the extensive functionality of the Models-3 framework. Users can
easily select important model options and can readily develop and execute models that apply to
their requirements.

We have integrated the CMAQ codes into the Models-3 system by following the basic set of
guidelines and rules presented in this chapter.

18.10 References

[1] http://interactivate.com/public/cvswebsites/cvs_toc.html, http://www.cyclic.com/cvs/, and
the UNIX man pages

[2] http://www.cs.cmu.edu/People/vaschelp/Archiving/Rcs/, and the UNIX man pages

[3] Fine, S. S., W. T. Smith, D. Hwang, T. L. Turner, 1998: Improving model development
with configuration management, IEEE Computational Science and Engineering, 5(1, Ja-Mr), 56-
65. and http://envpro.ncsc.org/pub_files/fine1998b.html

[4] http://sage.mcnc.org/products/ioapi/

[5] ftp://ftp.unidata.ucar.edu/pub/netcdf/

[6] EPA Third-Generation Air Quality Modeling System, Models-3 Volume 9b, User Manual,
Appendices, June 1998, EPA-600/R-98/069(b)

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, 1991: Object-Oriented
Modeling and Design, Prentice Hall

[8] Grell, G. A., J. Dudhia and D. R. Stauffer, 1994: A description of the fifth-generation Penn
State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-398+STR, 122 pp.

This chapter is taken from Science Algorithms of the EPA Models-3 Community
Multiscale Air Quality (CMAQ) Modeling System, edited by D. W. Byun and J. K. S.
Ching, 1999.

http://www.epa.gov/asmdnerl/models3/doc/science/ch17e.pdf

