

Addressing model overprediction of ozone influx from the Gulf of Mexico

Jim Smith, Mark Estes and Jocelyn Mellberg Texas Commission on Environmental Quality

> Ou Nopmongcol and Greg Yarwood Ramboll-Environ

> > Presented at: CMAS 2015

- Regional photochemical models are known to over-predict ozone concentrations transported onshore from the Gulf of Mexico.
- Chlorine, iodine, and bromine along with numerous compounds containing them are known to participate in ozone formation and/or destruction.
- Halogen chemistry results in significant depletion of ozone in maritime environments.
- Global models also over-predict marine ozone concentrations, adding to bias through derived boundary conditions.

Three Meteorological Regimes

TCEQ Air Quality Division/Ramboll Environ • Smith - Gulf of Mexico Ozone • CMAS - October 5, 2015 • Page 3

Three Meteorological Regimes

TCEQ Air Quality Division/Ramboll Environ • Smith - Gulf of Mexico Ozone • CMAS - October 5, 2015 • Page 4

- Augmented version of CB6r2: CB6r2h
- Iodine, Bromine and Chlorine pathways
- Adds 88 reactions and 41 species to CB6r2 (in addition to current 216 reactions involving 75 species)
- CAMx run time with CB6r2h ~ 1.6X longer than CB6r2 (when aerosols are not explicitly modeled)

Ozone Destruction Pathways

Chlorine Cycles:

	ClO + HO ₂ cycle	ClO + ClO cycle	CINO ₃ + H ₂ O cycle
	$CI + O_3 \rightarrow CIO + O_2$	$(CI + O_3 \rightarrow CIO + O_2) \ge 2$	$CI + O_3 \rightarrow CIO + O_2$
	$CIO + HO_2 \rightarrow HOCI + O_2$	$\text{CIO} + \text{CIO} \rightarrow \text{CI}_2 + \text{O}_2$	$CIO + NO_2 \rightarrow CINO_3$
	$\underline{HOCI + hv \rightarrow CI + OH}$	Cl_2 → 2 Cl	$CINO_3 + H_2O - aer \rightarrow HOCI + HNO_3$
			$\underline{HOCI + hv \rightarrow CI + OH}$
Net:	$O_3 + HO_2 \rightarrow OH + 2O_2$	$2 O_3 \rightarrow 3 O_2$	$O_3 + NO_2 + H_2O \rightarrow O_2 + HNO_3 + OH$

Bromine Cycles:

Net:

BrO + HO ₂ cycle	BrNO ₃ + H ₂ O cycle	HOBr + HBr cycle
$Br + O_3 \rightarrow BrO + O_2$	$Br + O_3 \rightarrow BrO + O_2$	$Br + O_3 \rightarrow BrO + O_2$
$BrO + HO_2 \rightarrow HOBr + O_2$	$BrO + NO_2 \rightarrow BrNO_3$	$BrO + HO_2 \rightarrow HOBr + O_2$
$\underline{HOBr} + hv \rightarrow Br + OH$	$BrNO_3 + H_2O - aer \rightarrow HOBr + HNO_3$	$Br + R-H \rightarrow HBr + R$
	<u>HOBr + hv \rightarrow Br + OH</u>	$HOBr + HBr - aer \rightarrow Br_2 + H_2O$
		$Br_2 \rightarrow 2 Br$
$O_3 + HO_2 \rightarrow OH + 2O_2$	$O_3 + NO_2 + H_2O \rightarrow O_2 + HNO_3 + OH$	$O_3 + HO_2 + R-H \rightarrow 2 O_2 + H_2O + R$

	IO + HO2 cycle	IO + IO cycle	IO + NO2 cycle
	I + 03 → I0 + 02	(I + O3 → IO + O2) x 2	I + 03 → I0 + 02
	$IO + HO2 \rightarrow HOI + O2$	IO + IO → I + OIO	$IO + NO2 \rightarrow IONO2$
	$\underline{HOI + hv \rightarrow I + OH}$	$\underline{OIO + hv \rightarrow I + O2}$	$IONO2 + hv \rightarrow I + NO3$
			NO3 + hv \rightarrow NO + O2
			$\underline{\text{NO} + \text{O3}} \rightarrow \text{NO2} + \text{O2}$
Net:	$O_3 + HO_2 \rightarrow OH + 2O_2$	$2 O_3 \rightarrow 3 O_2$	2 O3 → 3 O2

These cycles are referred to as catalytic cycles because the halogen atoms are regenerated in the reactions and therefore one I, CI, or Br atom can potentially destroy many O_3 molecules.

- Molecular iodine (I₂, CB6h species I2) emissions from seawater are assigned a constant flux of 4X10⁸ molecules cm⁻²sec⁻¹.
- Chlorine and bromine-content of sea salt aerosols (SSCL and SSBR, respectively) are assumed to be produced by oceanic turbulence, bubble breaking, and viscous shear and are modeled using the CAMx sea-salt preprocessor.

- Halomethanes are generated by organic sources and allocated spatially according to monthly average chlorophyll-a observations from the SeaWIFS satellite. These include:
 - Iodomethane (CH₃I, CH3I)
 - Diiodomethane (CH₂I₂, MI2)
 - Chloroiodomethane (CH₂ICI, MIC)
 - Bromoiodomethane (CH₂IBr, MIB)
 - Chlorobromomethane (CH₂BrCl, MBC)
 - Dibromomethane (CH₂Br₂, MB2)
 - Dichlorobromomethane (CHBrCl₂, MBC2)
 - Chlorodibromomethane (CHBr₂CI, MB2C)
 - Bromoform (CHBr₃, MB3)

Halogen Compound Emissions: iodomethane (CH₃I)

May 2012, Each Day

Halogen Compound Emissions: iodomethane (CH₃I)

Halogen Compound Emissions: dibromomethane (CH₂Br₂)

Halogen Compound Emissions: chlorodibromomethane (CHCIBr₂)

Halogen Compound Emissions: bromoform (CHBr₃)

Halogen Compound Emissions: chlorobromomethane (CH₂CIBr)

Halogen Compound Emissions: dichlorobromomethane (CHCl₂Br)

Halogen Compound Emissions: diiodomethane (CH₂I₂)

Halogen Compound Emissions: bromoiodomethane (CH₂IBr)

Halogen Compound Emissions: chloroiodomethane (CH₂CII)

Halogen Compound Emissions: Iodine (I₂)

Constant, Every Day

Halogen Compound Emissions: Chloride from Sea Salt

May 31, 2012

Halogen Compound Emissions: Chloride from Sea Salt

June 16, 2012

- Same Continental U.S. (CONUS) grid as EPA 2011 modeling platform, 36 km coarse grid
- 2012 ozone season (May through September)
- Nested 12-km South-Central US and 4-km East Texas grids
- Updated emissions
 - MEGAN 2.10 biogenics with high-resolution LULC data (Guenther 2008 30-second data)
 - Link-based on-road emissions in Houston and Dallas-Fort Worth areas
- CAMx with CB6 chemistry

The TCEQ 2012 Modeling Platform

- GEOS-Chem V9-01-03 boundary conditions
- WRF 3.6.1
 - 38 vertical layers
 - Pleim-Xiu land-surface model
 - YSU PBL scheme
 - WRFCAMx w/ 100 m K_v patch
- <u>Not</u> based on Texas' hottest, driest year on record!

TCEQ Air Quality Division/Ramboll Environ • Smith - Gulf of Mexico Ozone • CMAS - October 5, 2015 • Page 26

The TCEQ 2012 Modeling Platform

Model Performance Comparison Galveston C1034

Hourly Concentration: 03

GALV, 481671034, C1034, Galveston 99th St.C1034/A320/X183, 99th St., Galveston, Galveston Co., TX

Observed

Model Performance Comparison

Hora I in the second second		
EX DEW	Area	Number Monitors
Abilene Fort Worth O	Dallas-Fort Worth (DFW)	17
	Houston-Galveston- Brazoria (HGB)	46
Collège Station	Beaumont-Port Arthur (BPA)	8
CNTX Houston Beaumont BPA	Northeast Texas (NETX)	3
Galveston HGB	Central Texas (CNTX)	17
UILA COrpus Christi	Corpus Christi- Victoria (CCV)	10
Deredo	Other areas	7
MCAllen	Eastern Texas Total (4 km grid)	109
Monterrey		

Maximum Daily 8-Hour (MDA8) Ozone Performance All Model Observation Pairs

	Bias (ppb)		RMSE (ppb)	
AREA	CB6r2	CB6r2h	CB6r2	CB6r2h
Dallas-Fort Worth	7.90	6.35	10.42	9.08
Houston-Galveston-Brazoria	12.95	10.40	16.42	14.12
Beaumont-Port Arthur	13.78	11.10	16.11	13.71
Northeast Texas	9.99	8.39	12.62	11.17
Central Texas	8.37	6.40	10.80	9.23
Corpus Christi-Victoria	7.79	4.50	11.62	9.28
All Eastern Texas	10.50	8.21	13.84	11.85

Maximum Daily 8-Hour Ozone Performance Observed MDA8 $O_3 \ge 60 \text{ ppb}$

	Bias (ppb)		RMSE (ppb)	
AREA	CB6r2	CB6r2h	CB6r2	CB6r2h
Dallas-Fort Worth	3.85	2.86	7.90	7.30
Houston-Galveston-Brazoria	4.07	2.59	12.41	11.69
Beaumont-Port Arthur	5.44	3.89	10.84	9.89
Northeast Texas	4.96	4.02	8.83	8.32
Central Texas	1.31	0.19	5.73	5.44
Corpus Christi-Victoria	-4.63	-6.55	8.35	9.31
All Eastern Texas	3.13	1.85	9.97	9.42

- Boundary conditions for regional modeling applications are typically extracted from global models such as GEOS-Chem and MOZART.
- Comparison of marine boundary conditions with near-shore monitors indicates that they over-predict ozone over ocean waters.
- Halogen chemistry is being included in newer versions of the global models.

Boundary Conditions Sensitivities

- Two model runs to assess the sensitivity of MDA8 Ozone in eastern Texas to marine boundary conditions:
 - Marine boundary concentrations of all pollutants south and east of Texas reduced by 50%.
 - Marine boundary concentrations of ozone south and east of Texas reduced by 10 ppb.

Model Performance Comparison

Model Performance Comparison

Model Performance Comparison

Model Performance Comparison

- Models over-predict ozone concentrations transported onshore from the Gulf of Mexico.
- Model performance can be significantly improved through use of halogen chemistry and through reduced marine boundary conditions.
- Smaller but still significant improvements are seen for MDA8 concentrations ≥ 60 ppb.
- Halogen chemistry increases CAMx execution time by about 60% when explicit aerosols are not being modeled.

- Faster halogen chemistry code to reduce long execution times
- Monitoring of halogen products at Galveston (summer, 2016)
- New boundary conditions from a global model with native halogen chemistry ("almost there" in GEOS-Chem)
- Investigation of iodine feedback loop ozone deposition on ocean waters releases I₂, which in turn reacts with ozone

- The TCEQ 2012 modeling platform can be accessed at: <u>https://www.tceq.texas.gov/airquality/airmod/data/tx2012</u> (currently June is online but other months should be available soon).
- Ozone background references:
 - Estes, M., D. Johnston, F. Mercado and Smith, J (2014) Regional background ozone in the eastern half of Texas, Presented at CMAS 2014 <u>http://www.cmascenter.org/conference/2014/agenda.cfm</u>
 - Smith, J., F. Mercado and M. Estes (2013). Characterization of Gulf of Mexico Background Ozone Concentrations, Presented at CMAS 2013 <u>http://www.cmascenter.org/conference/2013/agenda.cfm</u>
- Marine halogen chemistry references:
 - Yarwood, G., J. Jung, U. Nopmongcol and C. Emery (2012) Improving CAMx Performance in Simulating Ozone Transport from the Gulf of Mexico, Final Report for Work Order No. 582-11-10365-FY12-05
 - Yarwood, G., T. Sakulyanontvittaya, U. Nopmongcol and B. Koo (2015).
 Ozone Depletion by Bromine and Iodine over the Gulf of Mexico, Final Report for Work Order No. 582-11-10365-FY14-12
 https://www.tceq.texas.gov/airquality/airmod/project/pj_report_pm.html

Resources

- Modeling references:
 - ENVIRON (2014) User's Guide to CAMx version 6.10, available at http://www.camx.com/
 - Yantosca, et al., 2014, GEOS–Chem v9–02 Online User's Guide, <u>http://acmg.seas.harvard.edu/geos/doc/man/</u>.
- Also see:
 - Monks, et al., 2015, Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, 2015