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1. INTRODUCTION 
 
Fine Particulate Matter less than 2.5 micron in 

diameter are PM2.5 and studies indicate that they 
can pose health risk. Therefore, the Environmental 
Protection Agency (EPA) has set up guidelines to 
address this issue.  To assess this risk, the EPA 
has deployed a number of PM2.5 monitoring 
stations around the country. However, surface 
sampling can be quite expensive and therefore, 
existing networks are very limited. To provide 
better coverage, column integrated Aerosol 
Optical depth information derived by satellite 
observation can potentially be used to estimate 
PM2.5.  

In recent studies, it has been found that 
particle mass is often linearly related to the optical 
scattering coefficient of the particles which implies 
that the total column  integrated aerosol optical 
depth (AOD) measurements can be connected to 
surface PM2.5 using a simple linear regression 
model. However, a wide range of factors such as 
aerosols variability, meteorology and the vertical 
structure of aerosols can affect the PM2.5 to AOD 
relationship. 

Studies suggest that the relationship between 
PM2.5 and AOD does not work well in the 
presence of aloft plumes. Sources of aloft plumes 
include forest fires, bio mass burning that can 
inject smoke aerosols into the atmosphere and 
these aerosols can be elevated to troposphere 
and travel long distance. 

The ability to identify and quantify aloft plumes 
is critical for better interpreting the linkage of 
passive satellite observations of aerosol optical 
depth (AOD) and surface aerosol concentration 
(PM2.5). A number of numerical models which 
combine meteorological transport and satellite 
observations has been developed which attempt 
to quantify plume vertical height, concentrations 
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and extent including the Navy’s NAAPS model and 
NOAA’s GOES ASDTA product.  

In this study, we analyze the potential of using 
these plume forecasts to either filter out or 
compensate contaminated cases resulting in a 
better PM2.5 to AOD relationship. We used multi-
year MODIS AQUA/TERRA aerosol optical depth 
and PM2.5 concentration from 20 stations in NY 
State. Preliminary results show that multi-year 
GOES-ASDTA smoke product can be used to get 
a useful smoke indicator that can effectively 
eliminate smoke contaminated cases and improve 
the correlation and RMSE between PM2.5 and 
AOD. In addition to that, LIDAR imagery from 
CCNY LIDAR were used to filter out aloft plume 
days and observe the effect of plumes on potential 
linear behavior between PM2.5 and AOD. 
 

2. METHODOLOGY 
 

First we collected 24 hours of PM2.5 
concentration data from NYCDEC website and 
from the website 15 urban and 5 non-urban station 
data were available for summer 2010-2012. We 
used MODIS AQUA/TERRA satellite data to 
collect AOD data of these PM2.5 stations for the 
same period of time. Then we analyzed the effect 
of Smoke Plume events in the relationship 
between PM2.5 and AOD using aloft plume 
images from CCNY LIDAR image library. The 
LIDAR at City College of NY is a ground-based 
multi-wavelength elastic-Raman scattering LIDAR. 
It observes 2D vertical distribution of aerosols and 
clouds at 1064, 532, 355-nm. The LIDAR derives 
PBL-height and temporal variation of the aerosol 
loading. In addition, we can identify aloft aerosol 
layers as smoke/dust. The LIDAR at CCNY is also 
able to isolates PBL-AOD and aloft plume-AOD. 
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We used LIDAR images of summer 2010 to 2012 
at CCNY site which can tell us which days have 
aloft plumes and which days have clear sky. Since 
the CCNY site is an urban site, we can determine 
the aloft plume days/clear sky days for all the 
urban PM2.5 stations in New York and filter out 
the contaminated days while analyzing the 
relationship between PM2.5 and AOD for the 
urban stations of NY.  

The CCNY LIDAR image can only tell us if 
there is any plume incident in the urban area. 
These images are not suitable for determining 
plume events outside of the city area. To extend 
our analysis to bigger domains of interest, we 
make use of satellite and/or model based aerosol 
plume products. First we use the NOAA satellite 
based smoke plume product ASDTA 
(Kondrugunta et. al) for the summers of 2010-
2012 and determined the smoke plume values 
over the 20 PM2.5 stations in NY State. Using 
ASDTA smoke plume data as a filter for 
contamination, we analyzed the PM2.5 to AOD 
relationship for both urban and non-urban cases in 
NY State.  

Then we collected NAAPS (Navy Aerosol 
Analysis and Prediction System) aerosol layer 
data for summer of 2010-2012 and calculated the 
PBL, aloft and total smoke AOD from the mass 
concentration profile and total AOD data that were 
available. Using these three different smoke AOD 
data as contamination filters, we analyzed the 
relationship between PM2.5 to AOD for the urban 
and non-urban PM2.5 stations in NY State. Finally, 
we compared the results from the ASDTA filter to 
the NAAPS filter and determined which product 
can provide us with better result in improving the 
PM2.5 to AOD relationship. 

 

3. RESULTS 
 
3.1 Hourly PM2.5 vs AOD 

 
After collecting PM2.5 concentration data for 

available 15 urban and 5 non-urban NY stations 
from NYDEC for summer 2010-2012 and  AOD 
data at PM2.5 station locations from MODIS 
AQUA/TERRA for summer 2010-2012, PM2.5 vs 
AOD was plotted for all 20 PM2.5 station locations 
at MODIS hours. Low slope and fairly high offset 
can be observed from the plot in Figure 1.  

 
 

 
 

3.2 LIDAR (Light Detection and Ranging) 
Imagery for plume detection: 

 
NOAA CREST LIDAR can be used to detect 

existence of plumes. Direct integration of the 
extinction coefficient can be used to estimate the 
plume AOD, as well as the resulting PBL AOD. 
Plumes can easily be greater than 50% of total 
AOD. In Figure 2, we note the presence of a 
significant aloft plume over the PBL layer on June 
29th, 2012.  
 

 

The LIDAR imagery can be used to study the 
effect of plumes on potential linear behavior 
between satellite AOD and surface PM2.5. We 
selected the aloft plume days by looking at the 
LIDAR images as shown in Figure 2 and also 
determined which days are clear sky days. The 
images that showed plume presence above the 
PBL layer were named as plume days and others 
were determined to be clear sky days.  In general, 
we note a reduction in regression offset as well as 
an improved slope and correlation in Figure 3(b). 

y= 25x+5.9 

R=0.5968 

rmse=18.39 

Fig. 1. PM2.5 vs AOD over 15 urban and 5 
non-urban PM2.5 stations in NY State. 

Fig. 2. LIDAR image of plume presence over CCNY site for 
June 29, 2012 (Collected from NOAA CREST LIDAR 
imagery website). 

http://www.nrlmry.navy.mil/aerosol/
http://www.nrlmry.navy.mil/aerosol/
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As expected, poor correlation is seen when only 
the smoke plume cases are studied in Figure 3(c).  

 

 

 

 

3.3 ASDTA Filtering based on average 
smokiness of entire NY: 

 
To explore a wider domain, we can’t use the 

LIDAR imagery, so we use the different plume 
products. It should be noted that the ASDTA 
Smoke Product seems to ignore the smoke AOD 
values that are closed to zero. 50 % of the 
collected Smoke AOD tends to be above 
approximately 0.3 which implies that ASDTA 
algorithm mainly attempts to construct significant 
smoke plume cases and is unlikely to accurately 
estimate smaller plumes. In addition, plume 
transport algorithms are not expected to have very 
good spatial accuracy. Therefore, using it to 
determine the smoke content of a single pixel is 
not realistic. A more conservative approach is to 
use an extended domain and estimate the smoke 
likely hood based on statistics. We quantify the 
smoke contamination of each event as: 

 
Smokiness=average smoke AOD in the 
domain * fraction of smoky pixels in the 
domain           (1) 

 
Where, Fraction of smoky pixels 
    = valid number of pixels / total number of pixels              
                                                                        (2) 
We consider our domain to be the entire NY state 
and determine the total number of valid pixels in 
the domain. Valid pixels are those pixels in New 
York State domain whose smoke AOD values are 
not NaN values.  

 
We calculated the average Smokiness of NY state 
for each hour in summer 2010-2012 for which 

y=26x+4.5 

R=0.6056 

rmse=20.35 

No Filter 

Urban Stations 

Fig. 3(a). PM2.5 vs AOD over 15 urban PM2.5 
stations in NY State without using any filter. 

 

Fig. 4. Quantifying plume contamination as 
“Smokiness” using ASDTA. 
 

 

Filtered out aloft plume days 

y=36x+1.9 

R=0.6732 

rmse=17.63 

Fig. 3(b). PM2.5 vs AOD over 15 urban PM2.5 
stations in NY State after filtering out aloft plume 
days. 

Urban Stations 

Aloft plume days 

y=13x+9.3 

R=0.3377 

Fig. 3(c). PM2.5 vs AOD over 15 urban PM2.5 
stations in NY State when considering only aloft 
plume days. 
 

Urban Stations 
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PM2.5 and AOD data are available. A CDF 

distribution allows us to develop a long term 
climatology of “smokiness” within a given domain. 
From this, we can study the PM2.5 vs AOD as a 
function of the degree of “smokiness”. Based on 
the CDF plot in Figure 5, we applied the 
smokiness filter to the PM2.5 and AOD data and 
observe that as the smoke indicator decreases, 
the correlation between PM2.5 and AOD 
increases in Figure 7(a), the slope increases in 
Figure 7(b), the RMSE and DC offset keeps 
decreasing respectively in Figure 7(c) and Figure 
7(d). From Figure 1, we filter out the cases whose 
smokiness values are greater equal to 0.016 (an 
optimal point chosen from CDF plot) and notice 
significant improvement in correlation coefficient, 
slope, RMSE and intercept in Figure 6.  

 

Correlation X: 0.016 
Y: 0.7754 

Fig. 7(a). Correlation Coefficient of PM2.5 vs 
AOD improvement as the Smokiness filter 
decreases. 

 

Fig. 5. Cumulative distribution function of 
Average Smokiness of NY state in summer 
2010-2012. 

 

Fig. 6. Filtering based on average 
smokiness of entire New York State 

y= 45x-1.9 

R=0.7754 

rmse=12.82 

Filter out Smokiness>=0.016 

Slope 
X: 0.016 
Y: 45.43 

Fig. 7(b). Slope of PM2.5 vs AOD improvement as 
the Smokiness filter decreases. 

 

RMSE 

X: 0.016 
Y: 12.82 

Fig. 7(c). RMSE of PM2.5 vs AOD improvement 
as the Smokiness filter 
decreases. 

 

Intercept 

X: 0.016 

Y: -1.851 

Fig. 7(d). Intercept of PM2.5 vs AOD 
improvement as the Smokiness filter 
decreases. 
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In attempt to improve the resolution, we reduced 
the domain box from whole NY State to 20km 
boxes around the PM2.5 stations and calculated 
smokiness of those boxes for each of the time 
slots. Then we plotted the CDF function in Figure 
8 for smokiness and notice that the CDF is 
consistent for different regions (urban or 
nonurban) which is reasonable for transported 
smoke. After that, we pick an optimal point of 
smokiness 0.018 and applied the smokiness filter 
to the PM2.5 vs AOD of urban stations shown in 
Figure 3(a) and notice significant improvement in 
the relationship in Figure 9. 
In this case, we also notice that continuously 
decreasing the smokiness filter improves the  
correlation coefficient, slope, RMSE and intercept 
of the PM2.5 vs AOD relationship in Figure 10. 

 
 

  

Fig.8. CDF distribution of urban and non-urban 
smokiness of 20 km boxes around PM2.5 
stations. 

Correlation 

X: 0.018 

Y: 0.8772 

Fig. 10(a). Correlation Coefficient of PM2.5 vs 
AOD improvement as the Smokiness filter 
decreases. 

Slope 

X: 0.018 
Y: 27.61 

Fig. 10(b). Slope of PM2.5 vs AOD improvement 
as the Smokiness filter decreases. 

 

Intercept 

X: 0.018 
Y: 0.7254 

Fig. 10(d). Intercept of PM2.5 vs AOD 
improvement as the Smokiness filter decreases. 

 

RMSE 

Fig. 10(c). RMSE of PM2.5 vs AOD improvement 
as the Smokiness filter decreases. 

 

X: 0.018 
Y: 14.25 

y=28x+0.73 

R=0.8722 

rmse=14.25 

Filter out 
Smokiness>=0.018 

Urban 
stations 

Fig.9. Filtering based on smokiness of 20km 
boxes around PM2.5 stations. 
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3.4 NAAPS Smoke AOD for filtering 
contaminated cases: 

 
The CDF function of PBL, aloft and total 

smoke from NAAPS data in Figure 11 shows us 
that the PBL smoke and Aloft Smoke is about the 
same amount present in the atmosphere.  

 
We applied the same technique we used for 

ASDTA for filtering out the contaminated cases 
except that for NAAPS, we are directly using the 
smoke AOD for the filtering. Unlike ASDTA smoke 
product, NAAPS doesn’t give any NaN values of 
smoke, and that’s why we didn’t need to calculate 
the smokiness in this case. We applied three 
different kind of smoke filter: Aloft Smoke AOD 
filter, PBL Smoke AOD filter and Total Smoke 
AOD filter. All three filters produce almost the 
same improvement in correlation coefficient, 
slope, RMSE and intercept as the smoke indicator 
decreases which is shown in Figure 12. 
  

 

 

Interestingly  
PBL Smoke ~ Aloft Smoke  

Fig. 11. CDF distribution of NAAPS PBL, aloft 
and total smoke AOD. 
decreases. 

Correlation 

Fig. 12(a) Correlation Coefficient of PM2.5 vs 
AOD improvement as the NAAPS smoke 
indicator decreases. 

 

Slope 

Fig. 12(b) Slope of PM2.5 vs AOD 
improvement as the NAAPS smoke indicator 
decreases. 

 

RMSE 

Fig. 12(c). RMSE of PM2.5 vs AOD 
improvement as the NAAPS smoke indicator 
decreases. 
 

Intercept 

Fig. 12(d). Intercept of PM2.5 vs AOD 
improvement as the NAAPS smoke indicator 
decreases. 
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          3.5 NAAPS and ASDTA Smoke 
Indicator Comparison: 
 
       Since using either of the aloft, PBL or total 
smoke AOD of NAAPS for entire NY state domain 
provides similar results in improving the 
relationship between PM2.5 vs AOD, we choose 
the NAAPS total smoke AOD filter and compare its 
results with the ASDTA smoke indicator. In this 
case we are only considering the urban stations. 
Figure 13 shows the comparison of correlation 
coefficient, slope, RMSE and intercept changes as 
the NAAPS and ASDTA smoke indicator changes. 
The results show that the ASDTA smokiness filter 
provides us with a smoother and more consistent 
improvement in the relationship between PM2.5 
and AOD.  

 

 

 

 

 

4. CONCLUSION 
 

In general, we have demonstrated that by 
applying either ASDTA or NAAPS smoke indices 
as a filter of smoke plumes, there is a general 
improvement in the resultant relationship between 
satellite AOD and station PM25 as the Smoke 
Index decreases. In particular, the correlation and 
slope increases as the smoke index becomes 
lower and the RMSE and y-intercept decreases 
which is consistent with removal of smoke from 
inorganic aerosol condition. This implies that the 
SI indices can be used in a pre-processing mode 
to filter smoke cases. The use of the ASDTA 
smoke index over the entire New York State 
domain seems to provide a useful indicator of 

Correlation 

Fig. 13(a) Correlation Coefficient of PM2.5 vs 
AOD improvement as the NAAPS smoke 
indicator decreases. 

 

Slope 

Fig. 13(b). Slope of PM2.5 vs AOD 
improvement as the NAAPS total smoke AOD 
and ASDTA smokiness filter decreases. 
 

RMSE 

Fig. 13(c). RMSE of PM2.5 vs AOD 
improvement as the NAAPS total smoke AOD 
and ASDTA smokiness filter decreases. 
 

Intercept 

Fig. 13(d). Intercept of PM2.5 vs AOD improvement 
as the NAAPS total smoke AOD and ASDTA 
smokiness filter decreases. 
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smoke contaminated cases. We see that as SI 
decreases, the PM2.5 / AOD ratio increases, the 
correlation improves and the DC offset decreases. 
The increase in the slope is consistent with 
observations that smoke contamination (both PBL 
and aloft) will decrease the ratio. If we try to make 
the SI too low, the statistics becomes too sparse 
and the positive trends break down. The results 
are even more dramatic over the NYC area. When 
the domain size shrinks, the CDF is skewed to 
higher value which is reasonable since it is easier 
to fill a smaller cell with smoke. In addition, we see 
that the CDF is consistent for different regions 
(urban or nonurban) which is reasonable for 
transported smoke. NAAPS smoke index over the 
entire New York State domain also seems to 
provide a useful indicator of smoke contaminated 
cases. All three smoke indicators: Aloft Smoke 
AOD, PBL Smoke AOD and Total Smoke AOD 
seems to perform almost similarly in increasing the 
Correlation Coefficient, Slope and decreasing the 
RMSE and DC Offset. However, the Total Smoke 
AOD tends to have smoother increase in 
Correlation Coefficient. Finally the ASDTA smoke 
indicator seems to perform the best in improving 
the PM2.5 to AOD relationship. In the future, we 
plan to add the Smoke Index as an additional 
factor to more complex processing approaches 
such as NN’s to improve PM25 estimations.  
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