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1. INTRODUCTION 

 
Predicting people’s exposure in the micro-

environments, associated with their daily activities, 
is important in determining human health risks and 
to address the issue of exposure misclassification 
(HEI, 2010). Whilst personal exposure monitoring 
is increasingly used to estimate the air pollution 
exposure of individuals, the lack of spatial 
coverage leads to the need for additional tools that 
are capable of predicting outdoor ambient 
concentrations, where measurements are not 
available. A large number of techniques exist to 
estimate outdoor concentrations, including land 
use regression (Briggs, et al., 1997, Dons, et al., 
2014), dispersion or chemical transport modelling 
(Nonnemacher, et al., 2014 and Bentayeb, et al., 
2014), stochastic techniques using artificial neural 
networks (Ibarra-Berastegi, et al., 2008) and 
Monte Carlo simulation (McCreddin, et al., 2015). 
Here we use a dispersion modelling which 
accounts for the strength of emissions from 
different sources and the physical and chemical 
processes that influence transport, transformation 
and deposition of air pollutants (de Hoogh, et al., 
2014). Dispersion models are attractive since they 
generate high temporal and spatial resolution air 
pollution concentrations and are suitable for both 
‘what-if’ scenarios and for future air pollution and 
health forecasts (Batterman, et al., 2014).  

 
With significant numbers of the UK population 

living or working near roads and epidemiological 
and toxicological evidence supporting the notion 
that transport related air pollution contributes to an 
increased risk of death from cardiopulmonary and 
respiratory disease (WHO, 2005), there is a need 
for street scale dispersion modelling. In response 
to this need, the CMAQ-Urban model was 
developed to predict outdoor air pollution at street 
level as part of the UK research council project, 
“Traffic Pollution and Health in London” (Beevers, 
et al., 2012a). The CMAQ-Urban couples the 
Community Multi-scale Air Quality (CMAQ) model 

                                                        
 
*Corresponding author: Nutthida Kitwiroon, 
Environmental Research Group, King’s College London, 
London, SE1 9NH, United Kingdom; e-mail: 
nutthida.kitwiroon@kcl.ac.uk 

(Byun and Ching, 1999) and ADMS-Roads model 
(CERC, 2006), and is capable of predicting hourly 
NOx, NO2, O3, PM10 and PM2.5, at 20m grid 
resolution. As such the CMAQ-Urban model can 
be used for predicting the exposure of cyclists and 
pedestrians outdoors and in combination with 
micro-environmental mass balance models to 
calculate indoor air pollution within vehicles, trains, 
buses and buildings. 

 
For those people within the London 

population who travel beyond the capital, CMAQ-
Urban has been extended to predict hourly 
concentrations at 20m grid resolution over the 
whole of the UK. To make this scale of prediction 
possible, the model Fortran code has been 
parallelized with a Message Passing Interface 
(MPI) to minimize the model’s runtimes. The 
extension of CMAQ-urban for UK applications has 
been supported by the National Institute for Health 
Research (NIHR) project, “the Public health air 
pollution impacts of different pathways to meet the 
UK Climate Change Act commitment to 80% 
reduction on CO2 and other greenhouse gas 
emissions by 2050”. This paper discusses the 
performance of the CMAQ-urban at UK scale and 
its application to the London Hybrid Exposure 
Model (LHEM). 

2. CMAQ-urban APPROACH 
 
The CMAQ-Urban model interface was 

written using Fortran and has been parallelized 
with the Message Passing Interface (MPI) to 
improve model speed. The interface links 
meteorology from the Weather Research and 
Forecasting (WRF) model (Skamrock, et al., 
2008), background concentrations from CMAQ, 
and dispersion of road transport pollutants from 
the ADMS-Roads model. A simple near road NO2-
NOx-O3 chemistry scheme (Carslaw and Beevers, 
2005) is included within the interface. In the 
current version of the CMAQ-urban and close to 
traffic sources (5-225m), the exhaust component 
of PM10 and PM2.5 is treated as an inert species.  

 
An inline bottom-up road emissions module is 

integrated in the interface and is using the 
approach described in Beevers, et al. (2012b). 
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The emissions factors are derived from a remote 
sensing device (RSD) for NOx (Carslaw and Rhys-
Tyler, 2013), from the UK Department for 
Transport (DFT) for exhaust PMs (http://www.dft. 
gov.uk/matrix) and for non-exhaust PMs from the 
London Atmospheric Emissions Inventory 
(http://data.london.gov.uk/dataset/ london-
atmospheric-emissions-inventory-2010). The 
emissions model includes 11 vehicle types, with 
vehicle speed based upon the road types including 
motorway, dual carriageway, and single 
carriageway. The emissions are disaggregated 
into hourly values using the hourly profile of road 
traffic from 37 automatic traffic count sites in 
London. Currently emissions are calculated for 
over 17,000 UK major roads (Figure 1). 
 

 
Fig. 1. NOx emission rates for UK major road links (g 
km-1 s-1) 

The CMAQ-Urban outputs include; (i) maps of 
mean concentrations of NOx, NO2, O3, PM10 and 
PM2.5 at 20m grid resolution, (ii) concentrations at 
selected receptors for model evaluation, and (iii) 
concentrations for exposure estimation following 
each individual travel routes (optional). The output 
of hourly concentration maps is also optional. 

 
2.1 WRF/CMAQ model 

 
The WRF v3.4.1/CMAQ v5.0.1 model uses a 

domain of 23 vertical layers with seven layers 
under 1km and one horizontal nesting level, 
downscaling from 50km over Europe to 10km over 
the UK. Lateral boundary conditions for the WRF 
model were taken from the Global Forecast 

System (GFS) model at 6hr intervals and at 1° grid 
resolution and USGS land cover data were used. 
The physics options used for the simulation 
include Rapid Radiative Transfer Model (RRTM) 
longwave radiation scheme (Mlawer et al., 1997), 
Dudhia shortwave radiation scheme (Dudhia, 
1989), Kain-Fritsch cumulus scheme (Kain, 2004), 
WSM6 microphysics scheme (Hong and Lim, 
2006), Pleim-Xiu surface layer scheme (Pleim, 
2006), Rapid Update Cycle (RUC) land surface 
model (Benjamin, et al., 2004), and Asymmetric 
Convection Model 2 Scheme (ACM2) scheme 
(Pleim, 2007) for planetary boundary layer 
parameterization.  
 

The anthropogenic emissions for CMAQ were 
derived from the European Monitoring and 
Evaluation Programme (EMEP, http://www.ceip.at) 
and the European Pollutant Release and Transfer 
Register (E-PRTR, http://prtr.ec.europa.eu) for 
Europe, and a combination of the National 
Atmospheric Emissions Inventory (NAEI, http:// 
naei.defra.gov.uk) and the King’s road traffic 
emissions for the UK. The annual emissions data 
were processed into gridded hourly chemical 
species using the speciation and temporal profiles 
from AQMEII (http://aqmeii.jrc.ec.europa.eu/). The 
biogenic emissions and plume rise for point source 
emissions were calculated using SMOKE v2.6 
(https://www.cmascenter.org/smoke). The 
boundary conditions were derived from the  
Monitoring Atmospheric Composition and Climate 
project (MACC, http://www.gmes-atmosphere.eu). 
The CMAQ simulation was performed with CB-05 
with aerosol and aqueous chemistry.  
 

Analysis of CMAQ’s PM predictions showed 
that secondary organic aerosol (SOA) was under 
predicted by approximately 1.7 µg m-3; and so a 
correction of 1 µg m-3 was added to the 
background concentrations prior to CMAQ-Urban 
simulation.  The value of 1 µg m-3 was also added 
to compensate a lack of biomass burning sources 
within the UK emissions model and was based 
upon the study on biomass burning contribution to 
aerosols in London and the UK Fuller, et al. 
(2014). 
 
2.2 ADMS-Roads model 
 

The ADMS-Roads v2.3 model has been used 
to estimate the dispersion of primary pollutants 
across regular grid with 5m spacing and within 225 
m of the center of a road. The dispersion grid is 
estimated for six road categories initially using a 
constant road emission rate of 1 g km-1 s-1 and 
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meteorological fields from WRF including wind 
speed and direction, temperature, surface sensible 
heat flux and planetary boundary layer height. The 
concentration from individual road is accounted for 
by scaling the 1 g km-1 s-1 value by each road’s 
emission. The road categories include open 
(motorway), typical (average urban roads 
surrounded by low rise buildings) and 4 street 
canyons classified by their orientations (north-
south, east-west, southwest-northeast and 
southeast-northwest).  

 
3. RESULTS AND DISCUSSION 

 
3.1 Model runtimes 

 
Model runtimes have been measured using 

test simulations in London on a machine with 6 
dual core 3GHz CPUs and 96GB RAM. Using the 
parallel code the CMAQ-Urban model runtime, 
using all 12 processors, was reduced by 
approximately a factor of 4, compared with a 
simulation using a single processor. Figure 2 
shows the model runtimes against the number of 
processors indicating that the runtime can be 
reduced by about a factor of 3 using 6 processors 
with a small additional benefit gained by using a 
higher number of processors, and driven by the 
architecture of the machine and the CMAQ-urban 
code. 

 
Within this study, the model runtime for UK 

annual simulations of NOX, NO2, O3, PM10 and 
PM2.5 is approximately 8 days on a Linux cluster 
with 8 slave nodes (6 dual core 3GHz CPUs and 
48GB RAM on each node), plus 6 days for 
WRF/CMAQ simulations. Based on a small test on 
the NERC’s ARCHER supercomputer, the model 
runtime can be further improved by a factor of 3-5. 
 

 
Fig. 2. Comparison of model runtimes for one day 
simulations for London against the number of 
processors  

3.2 Model performance analysis 
 

The predicted hourly NO2, O3, PM2.5 and PM10 
has been compared with measurements from 144 
UK monitoring stations all having ≥75% data 
capture. The performance statistics (Table 2) 
indicate that 80% of modelled data are within 
factor of 2 of the measurement. The model yields 
small positive biases of 0.4 ppb (2%) and 1.5 ppb 
(7%), for NO2 and O3, respectively, and negative 
biases of 4 µg m-3 (16%) and 1 µg m-3 (7%) for 
PM10 and PM2.5. The RMSE values are 11.8, 8.8, 
13.0 and 9.3 for NO2, O3, PM10 and PM2.5, 
respectively. The r values are 0.8 for both NO2 and 
O3 and 0.7 for PM10 and PM2.5. 
 
Table 2. Performance statistics of CMAQ-Urban in 
predicting NO2 (ppb), O3 (ppb), PM10 (µg m-3) and PM2.5 
(µg m-3), year 2011. 

Pollutant Number 
of data 

Observed 
mean 

Modelled 
mean FAC2 MB NMB RMSE r 

NO2 2681929 20.1 20.5 0.8 0.4 0.02 11.8 0.8 

O3 1605883 20.2 21.7 0.8 1.5 0.07 8.8 0.8 

PM10 2556574 23.4 19.7 0.8 -3.7 -0.16 13.0 0.7 

PM25 1860753 14.9 13.9 0.8 -1.0 -0.07 9.3 0.7 

Note: FAC2 = factor of two of measurement, MB = mean bias, NMB = 
normalized mean bias, RMSE = root mean square error, and r = 
correlation coefficient 
 

The temporal variation of modelled NO2, NOx, 
O3, PM10 and PM2.5 agree reasonably well with 
observations, although a large negative bias is 
observed in NOx and PM10 predictions (Figure 3). 
The negative bias in PM10 particularly during 
daytime may be attributed to the missing 
emissions sources such as resuspended dust and 
the under prediction of SOA. The negative bias of 
NOx is attributed to the under prediction at 
kerbside locations within 5m of the road. Figure 3 
also shows diurnal and monthly variations of NO2 
at airport, kerbside, roadside, rural, suburban and 
urban background sites. Whilst the model is able 
to capture the magnitude of NO2 well at most 
locations, a similar large negative bias occurs 
during the daytime at kerbside sites and a small 
positive bias is observed at rural and suburban 
sites. The monthly profiles also consistently show 
a negative bias at kerbside sites and a small 
positive bias at rural and suburban sites. The 
under prediction close to roads and over prediction 
at suburban and rural locations suggests that the 
bias in NOx and NO2 predictions may be due to a 
bias in the spatial distribution of the emissions.  
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Fig. 3. 2011 annual average diurnal profiles of observed 
and modeled NO2, NOx, O3, PM10 and PM2.5 
concentrations (top, ppb for gases, µg m-3 for PMs) and 
diurnal (middle) and monthly (bottom) profiles of NO2 at 
airport, kerbside, roadside, rural, suburban and urban 
background sites. 

However, as demonstrated in Figure 4 by the 
inset maps of London using 10km and 2km grids, 
the use of the coarse grid resolution may be partly 
responsible. To test this, a spatial analysis shows 
that increasing the grid resolution of background 
concentrations is important for NOx and NO2 with 
the spatial gradient of pollutant concentrations and 
the hot spots, such as Heathrow airport, much 
better captured using a 2km grid improving the 
negative bias at kerbside locations and negative 
bias at rural and suburban sites. Further 
investigation is required.   

 
For the benefit of further development of the 

model, it is worth pointing out that the current 
results may slightly suffer from the double 
counting as traffic emissions were included in the 
CMAQ simulation. The double counting of traffic 
pollutant in background concentrations is 
estimated to be somewhat less than 1% (Beevers, 
et al 2012a). The double counting of traffic 
pollution can be eliminated using CMAQ-DDM to 
provide the more accurate background 
concentrations.  

  

 
Fig. 4. 2011 Annual mean NO2 concentrations for UK 
using 10km grid background concentrations (right) and 
for London using 10km and 2km grid background 
concentrations (left).  

3.3 Application in hybrid exposure model 
 

The CMAQ-Urban prediction in combination 
with micro-environmental mass balance models 
have been used to estimate the indoor 
concentrations  within vehicles, trains, buses and 
buildings, and outdoors for the exposure of cyclists 
and pedestrians. In combination with space-time 
activity data taken from the London Travel 
Demand Survey and provided by Transport for 
London (David Wilby, personal communication) 
the time-activity based exposure to PM2.5 and NOx 
has calculated for 45,079 individuals. Figure 5 
shows an example of the PM2.5 exposure of a 
person during their daily journey. In this case the 
person started their journey by walking to an 
underground station at 8am and then travelling on 
an underground train for about half an hour before 
taking a bus to their destination. After spending 
some time at their destination, they returned home 
at lunchtime via the same route, using the same 
transport modes and then stayed at home from 
12:30pm onward. The calculation shows that his 
exposure to PM2.5 varies significantly across the 
journeys and in different locations. The highest 
level exposure to PM2.5 is approximately 94 µg m-3 
when they travelled via the underground.   
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Fig. 5. Sample of exposure to PM2.5 of a person during 
the course of the day 

The exposure estimates of all individuals 
within the sample population of 45,079 can then 
be aggregated up to represent the entire London 
population. When compared with the exposure 
estimated using the residential address, the 
average exposure to NOx and PM2.5 using time-
activity exposure model is ~60% and ~40%, 
respectively, less. This is a combination of the 
London population spending 90% of their time 
indoors and the effect of indoor/outdoor ratios. 
Note that this analysis does not include the effect 
of indoor sources. These differences highlight the 
exposure misclassification encountered using 
residential address and emphasize that the time-
activity approach has the capability to produce 
accurate estimates of exposure, provided the 
ambient concentrations in different 
microenvironments are robust.  

 
4. CONCLUSIONS 
 

CMAQ-Urban has been extended to predict 
fine spatio-temporal scale of outdoor air pollution 
at UK national level for time-activity human 
exposure studies.  An annual simulation can be 
accomplished within an acceptable time frame 
using the parallel CMAQ-Urban model code.  
 

The model evaluation shows that the model 
results are in good agreement with the 
measurements, although some improvements are 
needed such as for SOA, biomass burning and re-
suspended aerosols at background locations. The 
spatial distribution of model output can be further 
improved using a finer grid resolution of 
background concentrations and this may also 
reduce the negative bias at kerbside sites and 
positive bias at rural and suburban sites. Although 
a small error of less than 1%, double counting in 
CMAQ-Urban can be eliminated using CMAQ-
DDM. The study has demonstrated that the output 

from CMAQ-Urban can be used in time-activity 
population exposure studies to provide more 
realistic exposure estimates.  
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