
Presented at the 14th Annual CMAS Conference, Chapel Hill, NC, October 5-7 2015

1

A PARALLEL SPARSE MATRIX IMPLEMENTATION OF THE GEAR SOLVER FOR THE GMI
MODEL WITH RESULTS FOR NEW PARALLEL DEVICES

T. Clune, NASA Goddard Space Flight Center, MS 610, Greenbelt, MD 20771, Megan R. Damon, NASA
Goddard Space Flight Center and Science Systems and Applications, Inc.MC 606, Greenbelt, MD 2077

and, George Delic* HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

The Global Modeling Initiative (GMI) [GMI] is

part of the NASA Modeling Analysis and
Prediction (MAP) program [MAP]. GMI
investigations support the development and
integration of a state-of-the-art modular 3-D
chemistry and transport model (CTM) that includes
full chemistry for both the troposphere and
stratosphere. The GMI model is involved in
assessment of anthropogenic impacts, such as
those from aircraft, future changes in atmospheric
composition, and the role of long-range transport
of pollution.

The GMI model serves as a testbed for
different meteorological fields, emissions,
microphysical mechanisms, chemical
mechanisms, deposition schemes, and other
processes determining atmospheric composition,
both gas-phase and aerosol. This enables GMI to
work in close collaboration with the chemistry-
climate modeling community. GMI seeks to
understand and constrain the uncertainties in
model results through inter-comparison of
simulations and through comparison with
observations.

 To describe production and loss of chemical
species in reaction mechanisms in the CTM, GMI
implements the SMVGear solver algorithm for
integration of a sparse stiff system of ordinary
differential equations based on the work of
Jacobson and Turco [Jacobson, 1994] for the
JSparse method.

The HiPERiSM version replaces the legacy
sparse matrix methodology of Jacobson and Turco
by a more modern one (FSparse) described by
Delic [2013, 2014]. This work reports on this
replacement in the GMI CTM code with
performance results on Intel’s [INTEL] Ev5 CPU
and Phi many integrated core (MIC) commodity
architecture.

* Corresponding author: George Delic,

george@hiperism.com.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Each node hosts two Intel E5v3 CPUs
with 16 cores each. In addition each has four Intel
Phi co-processor (MIC) cards with 61 and 60
cores for the respective models. With four MIC
cards per node the total (usable) thread count is
960 and 944, respectively. This cluster is used for
either MPI only, or hybrid thread-parallel OpenMP
plus MPI execution. In this application, when the
Phi cards are in use, each MPI process offloads its
own OpenMP parallel region to a Phi co-
processor. But this is not the only way to use Intel
Phi architectures and other examples of
successful utilization of such hybrid systems may
be found in Reinders [Reinders, 2013, 2015].

The CPU and MIC architecture supports AVX
2 and FMA instructions and peak performance is
only attainable if the full potential for FMA vector
instructions is uncovered. Peak Gflop/s
performance for either CPU, or Phi card, is
calculated from the formula: FMA concurrency
(=2) x number of cores x vector length (= 8 SP
words) x processor speed. Respectively, this is

CPU: 2 x 16 x 8 x 2.3 = 589 Gflop/s
Phi 7120: 2 x 61 x 8 x 1.238 = 1208 Gflop/s

Thus, one MIC card has double the peak
performance potential of a CPU. However, for
performance to approach this value on a MIC
card, with a maximum bandwidth of 352 GB/s (44
Gword/s), an algorithm must reach 1208/44=28
operations per word. This requires careful memory
management and arithmetic optimizations (see
Chapter 27 in [Reinders 2015]). These peak
values are not reached in the work reported here,
but further optimization work is in progress.

http://map.nasa.gov/
http://map.nasa.gov/

Presented at the 14th Annual CMAS Conference, Chapel Hill, NC, October 5-7 2015

2

2.2 Compilers

This report implemented the Intel compiler
(release 15.0) for the hardware shown in Table
2.1. For MIC targets this compiler enables two
important optimizations in the MIC environment:
FMA vector and hardware gather/scatter
instructions. Furthermore, specific compiler
options and environment variables allow the
selection of the number of threads per core, and
MIC-specific optimizations for the offloaded
OpenMP parallel region. Exploring these features
is important in approaching peak Gflop/s rates.

2.3 Episode studied

For all GMI results reported here the model
episode selected was for December 01, 2011,
using data provided by NASA GSFC. This episode
has 124 active chemical species. The episode was
run for a full 24 hour simulation on a 144 X 91 x 72
global domain for a total of 0.94 million grid cells.
The cells are partitioned amongst the number of
MPI processes. In the original version of the GMI
JSparse model these cells are processed in blocks
of 20 by SMVGear in the CTM. In this work, for the
“inlined” version of the original GMI and the
FSparse version, each cell is processed
individually in SMVGear.

Table 2.1. CPU platforms at HiPERiSM Consulting, LLC

Platform Node20 Node21

Operating system SuSE Linux 13.2 SuSE Linux 13.2

Processor Intel™ IA32
(E5-2698v3)

Intel™ IA32
(E5-2698v3)

Coprocessor 4 x Intel Phi
7120

4 x Intel Phi
5110

Peak Gflop/s (SP)
per processor

589 589

CPU power
consumption

135 Watts 135 Watts

Cores per
processor

16 16

Power per core 8.44 Watts 8.44 Watts

Processor count 2 2

Total core count 32 32

Clock 2.3 GHz 2.3 GHz

Bandwidth 68.0GB/sec 68GB/sec

Bus speed 2133 MHz 2133 MHz

L1 cache 16x32 KB 16x32 KB

L2 cache 16x256 MB 16x256 KB

L3 cache 40 MB 40 MB

3. GMI SMVGear MODEL

3.1 Original GMI version

For each block of 20 cells the chemistry-
transport model (CTM) in in the original GMI
version processes a nested loop structure shown
schematically as follows:

!$omp parallel

!$omp do schedule(dynamic, my_chunk)

 do kblk = 1, nblockuse

! each thread takes it own kblk value

! to perform SMVGEAR on a block of cells

 …………

 End do

 Each MPI process performs this OpenMP
parallel loop for both values of the day/night index
(iday). As an example, with four MPI processes
(NP=0-3), there are eight calls to SMVGear per
simulation time step, or 8 x 24 =192 calls in a 24
hour simulation. An example with 1 OpenMP
thread is shown in Table 2.2 with the loop range
(nblockuse) and the corresponding processing
time. A monitor of progress shows that some calls
to SMVGear finish before others (wait status)
while others continue executing (run status).
Therefore completion time for the SMVGear call is
determined by the longest running call. This
results in a load imbalance due to the
synchronization required at the end of the
simulation time step.

Table 2.2. Typical CPU times for original GMI
 NP iday nblockuse clock tics(1) Status

 3 1 3773 229501 ! wait

 2 1 4439 296057 ! wait

 3 2 7892 282953 ! run

 2 2 7226 256024 ! run

 1 1 9000 546253 ! run

 0 1 9540 572869 ! run

 0 2 2384 72800 ! wait

 1 2 2924 113219 ! wait

(1) Time unit returned with KIND=4
arguments in system_clock function

3.2 FSparse GMI version

 The FSparse version replaces the call to
SMVGear over a block of cells with calls for each
individual cell. This has two consequences. First
some vectorization potential is relinquished, but
with a sufficient number of threads in the OpenMP
thread team, this loss in performance is recovered.
The second consequence is that the precision of
the SMVGear solution is greatly improved as is
demonstrated in the next section.

Presented at the 14th Annual CMAS Conference, Chapel Hill, NC, October 5-7 2015

3

3.3 Performance profile of GMI

Enabling the internal timing calls in the GMI
shows the distribution of runtime spent in the
various physical processes during execution. Fig.
3.1 shows the case of execution with offload to the
Intel Phi devices for execution with MPI processes
4, 8, 16, and 32. The legend distinguishes these
and in each case the parentheses indicates the
total thread count and number of threads per core.
In all cases some 60% of the wall clock time is
accounted for by the CTM.

Fig 3.1. In the FSparse GMI version this shows the
fraction of total average component wall clock time vs
MPI-rank (MIC thread count, threads-per-core) in offload
mode on 4 x 7120P + 4 x 5110 Phi coprocessors: with 2
x host E5-2698v3 CPUs each.

4. NUMERICAL PRECISION COMPARISON

4.1 FSparse and inlined JSparse on host

Of the 124 species in the data set,
concentration values of the 14 species in this list:
CH2O, CH4, CO, HNO3, HO2, H2O2, MP, NO,

NO2, N2O5, O3, INO2 PAN, SYNOZ

have been compared for FSparse and an inlined
JSparse on the node20+node21 hosts. The inlined
version is a modification of the original to force
processing in SMVGear on individual grid cells to
bring the convergence criterion in conformance
with that in FSparse. For all 24 simulation time
steps, the comparison is for all ilat x ilong x 24 =
314496 values in the first layer of the grid in the
form of GNU plot graphics with a sort from
smallest to largest concentration value. Typical
results are those in Fig. 4.1 for O3. When
comparing the same results for FSparse executing
with offload to the Intel Phi the results are

identical. The observed differences are of the
order of the error tolerances used in the SMVGear
convergence criteria and may be assumed to be
negligible.

4.2 Inlined and original JSparse on host

When making the same species concentration
comparison for JSparse in two versions: inlined
and original, the comparison is typically like that
shown in Fig. 4.2.

Fig 4.1. On a log scale this shows the absolute error in
comparing O3 species concentration predictions of
FSparse and inlined JSparse for 314496 values. The
curve is the concentration value sorted on increasing
size.

Fig 4.2. On a log scale this shows the absolute error in
comparing O3 species concentration predictions of
JSparse in inlined and original versions for 314496
values. The curve is the concentration value sorted on
increasing size.

The results of the comparison in Fig. 4.2 show
observed differences that are large and often
exceed the value of the species concentrations. In
view of the sensible values for the comparisons of
Fig. 4.1, it has to be assumed that these
divergences in precision originate in the original
(legacy) version of JSparse and must be related to

0

0.2

0.4

0.6

0.8

1

w
h

o
le

_
G

M
I

gm
iT

im
eS

te
p

p
in

g

p
ro
cS
yn

cB
eg

St
e
…

gm
iE

m
is

si
o

n

gm
iD

if
fu

si
o

n

p
ro
cS
yn

cB
ef
o
re
…

gm
iA

d
ve

ct
io

n

gm
iC

o
n

ve
ct

io
n

gm
iD

ry
D

e
p

o
si

ti
o

n

gm
iW

et
D
ep

o
si
ti
…

gm
iC

h
em

is
tr

y

gm
iP

h
o

to
ly

si
s

p
ro
cS
yn

cE
n
d
St
e…

gm
iW

ri
ti

n
gO

u
tp

u
t

4 (177,4t) 8 (236,3t) 16 (236,1t) 32 (236,1t)

Presented at the 14th Annual CMAS Conference, Chapel Hill, NC, October 5-7 2015

4

the number of grid cells per block. The original
(legacy) version of JSparse in the GMI model uses
20 cells in a block. This means that the error
tolerance criterion calculation in the SMVGear
algorithm uses the RMS error over this block of 20
cells. Improvement in accuracy was confirmed by
reducing the number of cells in a block and
repeating the comparison to see a reduction in the
absolute error. On this basis either the inlined
JSparse or FSparse versions of GMI are
considered definitive.

5. PERFORMANCE OF GMI

5.1 CPU core demand in hybrid mode

This section present results for a combination
of runs in a 24 hour simulation with differing MPI
rank and OpenMP thread counts. Table 5.1
summarized the core count demanded in each
combination for host CPUs. Those cases where the
core demand exceeds the available core count of
64 (across both nodes) are color coded.

Fig. 5.1 shows the FSparse scaling results for

all combinations in Table 5.1 and there is a peak
at 128. This corresponds to thread x MPI process
counts of: 8 x 16, 4 x 32, and 2 x 64. These results
suggest that it is possible to oversubscribe the
available core count by as much as a factor of 2
and still have an improvement in performance.

5.2 Performance on host CPUs

For execution on the host CPUs Fig. 5.2
shows the wall clock times for FSparse as a
function of increasing MPI process count. For MPI
ranks upto to 40 there is a steady improvement as
thread count increases, but is bounded by the
limits in Table 5.1.

Fig 5.1. This shows FSparse scaling (over the case of the
4 MPI ranks and 1 OpenMP thread) versus the number
of cores demanded (see Table 5.1), with 1 to 8 OpenMP
threads and MPI ranks 4 to 64 (see legend).

For the original JSparse version Fig. 5.3

shows the corresponding results (with changes in
vertical and horizontal scales). This improvement
in wallclock times is in contrast to either the
FSparse or inlined JSparse versions which use a
single cell per block in both cases. For an easier
comparison two cases with MPI ranks of 4 and 8
from Figs. 5.2 and 5.3 are shown in Fig. 5.4 as a
function of the thread count. The FSparse
execution is in no-offload mode, i.e. on the host
CPUs only. At the highest thread count (8)
JSparse and FSparse results approach each other
asymptotically. However, The effects of reducing
the cell block count from 20 to 2 in the original
JSparse version shows a steady increase in wall
clock time as is demonstrated in in Fig. 5.5 where
the dilation in wall clock time is ~1.3 (rank 4) and
~1.5 (rank 8), respectively as the cell count per
block reduces from 20 to 2.

Fig 5.2. Wall clock time (hours) versus MPI process
count for FSparse on host CPUs for OpenMP thread

counts from 1 to 8 as shown in the legend.

1.0

3.0

5.0

7.0

9.0

11.0

4 16 32 48 80 128 160 240 288 384

4 8 16 24

32 40 48 64

-0.1

0.1

0.3

0.5

0.7

0.9

4 8 16 24 32 40 48 64

1 2 4 6 8

Table 5.1: Core demand on the host nodes for
combinations of MPI rank (column) and OpenMP thread
count (row). Color coding indicates where the core count
is oversubscribed (i.e. above the total of 64 available)

 4 8 16 24 32 40 48 64

1 4 8 16 24 32 40 48 64

2 8 16 32 48 64 80 96 128

4 16 32 64 96 128 160 192 256

6 24 48 96 144 192 240 288 384

8 32 64 128 192 256 320 384 512

Presented at the 14th Annual CMAS Conference, Chapel Hill, NC, October 5-7 2015

5

Fig 5.3. Wall clock time (hours) versus MPI process
count for the original JSparse version on host CPUs for
OpenMP thread counts from 1 to 8 as shown in the
legend.

Fig 5.4. For the FSparse (no-offload) and original
JSparse versions this shows the wall clock time (hours)
versus the number of OpenMP threads. Each pair of
curves corresponds to a different choice for the number
of MPI ranks (4 or 8) as identified in the legend.

5.3 Performance with Phi cards

When offload to the Intel Phi is enabled the results
for FSparse are those shown in Fig. 5.6 as a
function of MIC thread count and again in Fig. 5.7
as a function of MPI process count. The latter
demonstrates that the optimal utilization of the Phi
architecture in offload mode occurs when each
MPI rank has its own dedicated MIC card. This
occurs when the MPI rank is 8, with 4 ranks per
node. The combined results of Figs. 5.6 and 5.7
suggest that if two MPI ranks could utilize 120

threads on each card, double the number of MPI
ranks (i.e. 16) could still deliver optimal
performance. Testing of this option is in progress.

Fig 5.5. For the original JSparse version this shows the
wall clock time (hours) versus the number of cells in a
block. Each curve corresponds to a different choice for
the number of MPI ranks (4 or 8) as identified in the
legend.

Fig 5.6. This shows the wall clock time versus the
number of OpenMP threads for FSparse in offload mode
to the Intel Phi architecture. Each curve corresponds to
a different choice for the number of MPI ranks (4 to 32)
as identified in the legend.

In a final example, results of four runtime modes
for FSparse and the legacy JSparse versions are
compared in Fig. 5.8. The two modes for FSparse
are those with and without offload (offload/no-
offload), and the two modes for JSparse are
original and inlined. In Fig. 5.8 the legacy JSparse
version delivers the lowest values on wall clock
time, and the inlined JSparse version the highest.
The two cases in between are for FSparse with
and without offload, and the best times of these

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 6 8

no-offload (rank 4) original (rank 4)

no-offload (rank 8) original (rank 8)

0.13

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

2 4 8 16 20

4 8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30 59 118 177 236

4 8 16 32

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

4 8 16 32

1 2 4 6 8

Presented at the 14th Annual CMAS Conference, Chapel Hill, NC, October 5-7 2015

6

two modes are for the latter, with the highest
thread count (8). However, it should be noted that
the synchronization of thread count scales in Fig.
5.8 between these two FSparse modes is
arbitrary.

Fig 5.7. This shows the wall clock time versus the
number of MPI ranks for FSparse in offload mode to the
Intel Phi architecture. Each curve corresponds to a
different choice for the number of OpenMP threads (30
to 236) as identified in the legend.

Fig 5.8. This shows the wall clock time versus the
number of OpenMP threads for FSparse in no-offload
(host only), offload mode (host and Intel Phi), and
JSparse in the original and inlined versions (on the host
only). Each curve corresponds to these respective
choices of the mode. The horizontal scale corresponds
to a thread count on either the host (1 to 8 threads), or
on the Intel Phi (30 to 236 threads).

6. CONCLUSIONS

6.1 Benefits of the FSPARSE method

A comparison of GMI in original and FSparse
versions showed these benefits for FSparse:

 Easy porting to either host CPU or attached
MIC devices with the same code.

 Good performance scaling with MPI rank or
OpenMP thread count.

 Superior numerical precision.

6.2 Numerical precision issues

A comparison of numerical precision for GMI
in JSparse and FSparse versions suggests that:

 The blocking of cells into groups required

in JSparse results in inferior precision.
 Application to individual cells in FSparse

enhances precision by many orders of
magnitude.

 For the same precision FSparse runtime is
less than (inlined) JSparse.

6.3 Future work

Further opportunities remain for thread
parallelism by:

 Enhancing MIC vector performance.
 Enabling nested thread parallelism.

ACKNOWLEDGEMENT

Work effort performed by HiPERiSM Consulting,
LLC, as Subcontractor/Consultant under a Task
Order issued by the National Aeronautics and
Space Administration, Goddard Space Flight
Center, MD.

REFERENCES

GMI. http://gmi.gsfc.nasa.gov/
MAP, http://map.nasa.gov/

Jacobson, M. and Turco, R.P., (1994), Atmos.

Environ. 28, 273-284.

Delic, G., 2013: contribution to 12th Annual CMAS

Conference, Chapel Hill, NC, October 28-30, 2013,
https://www.cmascenter.org/conference/2013/agenda.cf
m)
Delic, G., 2014: presented at the 8th International

Workshop on Parallel Matrix Algorithms and
Applications (PMAA14), July 2-4, Università della
Svizzera italiana // Lugano, Switzerland.

INTEL: Intel Corporation, http://www.intel.com.
Reinders, 2013, Intel Xeon® Phi™ Coprocessor High-
Performance Programming, James Reinders and Jim
Jeffers,Morgan Kaufmann/Elsevier, Waltham, MA, 2013.
Reinders 2015, High-Performance Parallelism Pearls:
Multicore and Many-core Programming Approaches,
James Reinders and Jim Jeffers,Morgan
Kaufmann/Elsevier, Waltham, MA, 2015.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 8 16 32

30 59 118 177 236

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/30 2/59 4/118 6/177 8/236

no-offload offload original inlined

http://gmi.gsfc.nasa.gov/
http://map.nasa.gov/
https://www.cmascenter.org/conference/2013/agenda.cfm
https://www.cmascenter.org/conference/2013/agenda.cfm
http://www.intel.com/

