Modeling Background Ozone: A Comparison between global, hemispheric and regional models

Barron H. Henderson¹, Christopher Emery², Lin Zhang³, Rohit Mathur⁴ and Joseph P. Pinto⁴

¹Environmental Engineering Sciences, University of Florida
²ENVIRON International Corporation, Novato, CA
³Atmospheric Chemistry Modeling Group, Harvard University
⁴Office of Research and Development, US EPA

What is Background Ozone?

Historically - Policy Relevant Background is ozone concentrations that would exist in the absence of anthropogenic emissions of ozone precursors in the U.S., Canada and Mexico (North American Background)

Background O_3 is not directly observable \rightarrow Must be estimated with models

Definitions

"Ozone concentrations that would exist in the absence of anthropogenic emissions of ozone precursors in _____"

- "all people" Natural Background
- "the U.S. only" U.S. Background
- "the U.S., Canada and Mexico" North American Background (historically PRB)

Simulations used here

	CQ*	GC [†]	CX [‡]
Model	Hemispheric CMAQ	GEOS-Chem	CAMx
Resolution	108km x 108km	1/2° x 1/3°	12km x 12km
Meteorology	WRF	GEOS5	WRF
Chemistry	Carbon Bond '05§	Version 8-02-03 ^{II}	Carbon Bond '05
Boundaries	N/A	GC 2x2.5°	GC 2x2.5°
Biogenic	BEIS	MEGAN	BEIS
Lightning	N/A	LTDIS scaled with Pickering 1997 profile	Scaled with Koo et al. profile
Wildfires	N/A	GFED monthly average	SmartFire daily estimate

*Simulations in development [†]Zhang et al. JGR 2011 [‡]Emery et al. AE 2012 [§]Nitrates updated to account for isoprene nitrates ^IUpdates in chemistry will decrease NOx loss to isoprene nitrates

Contributions will vary in space

+ = Monitor Locations - Zhang + Emery CASTNet

Rank Paired Evaluation Example

Consisten rtormance elatively T

Contribution vs Factor Separation

Stein and Alpert 1993 showed 2ⁿ zero-out simulations separate nonlinear factors and interactions – How much ozone in the absence of emissions?

- Each model has 2 simulations
 - Base case: all emissions
 - NAB: United States, Canada, and Mexico anthropogenic emissions removed
- Do the models agree about how NAB varies as a function of total ozone?

Background varies by season

MAM, JJA

- Prevalence and extent of wildfires
- Biogenic emissions are a function of temperature

Ozone Lifetime

- Inter-continental transport enhanced in spring and winter
- Local production more important in summer

Background Contribution Example

DNSISIE ibutic elative

amme **NSISte**

11

Simulation Overview

Rank-paired evaluation

- All models show relatively good performance
- Best performance depends on region/season
- NAB contributions to total ozone
 - Consistent in Spring, the West and Southeast
 - Differences in Summer California and North

Background contributes more to CAMx results

Does that correlate with observations?

Component Correlation with Observations

component Correlation **DSErvations** with

ompared t hem CAMX

Model Differences and Isoprene Emissions

CAMx – GEOS-Chem (NAB)

Leaf Area Index times emission factor

Conclusions

Encouraging NAB/Base consistency Spring with exception of Southeast – Western summer Differences in background – NAB better correlated with observations in CAMx – Appear related to isoprene emissions Isoprene affects: – VOC budget

NOx budget via organic nitrate formation

Future Work

Why do models disagree about NAB correlation?

3 different treatments of organic nitrates
Update mechanisms focused on isoprene nitrates

2 emission inventories that are known to differ
MEGAN > BEIS (Carlton and Baker EST 2011)

Need sensitivity studies to identify cause of the difference

Acknowledgements

US EPA OAQPS: Farhan Akhtar, Heather Simon, Norm Possiel

Supported in part by an appointment to the Research Participation Program at EPA/ NERL administered by the Oak Ridge Institute for Science and Education

American Petroleum Institute for funding modeling datasets

