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1. INTRODUCTION 
 
Previous efforts to estimate future climate on 

fine scales have employed dynamical down-
scaling where coarsely-resolved global-scale 
climate simulations were used to provide temporal 
and spatial boundary information for fine-scale 
meteorological models (Giorgi et al, 1990).  One 
such climate down-scaling effort has been 
underway at the US EPA using the Weather 
Research and Forecast (WRF) model and a 
nested 108-/36-km modeling grid (Otte et al, 2012; 
Bowden et al., 2012).  These studies have 
demonstrated WRF’s capabilities in this regard by 
using the NCEP-Department of Energy 
Atmospheric Model Intercomparison Project 
(AMIP-II) Reanalysis data (Kanamitsu et al., 2002) 
as a surrogate for global climate model information 
and comparing the WRF model outputs to finer-
scale re-analysis products.   

To take these previous efforts one step 
further, this work applies a similar technique using 
WRF to provide information at 12-km horizontal 
resolution.  Dynamical down-scaling to 12-km 
resolution involves challenges that were not 
encountered in the previous 108-/36-km work.  
These challenges include more than just higher 
computational and data storage demands, but also 
issues related to the resolution of surface features 
and the availability of adequately-resolved 
observational data for evaluation.   

For this study, the WRF model is applied in 
three modes.  The first is the standard WRF 
application where the simulation is constrained 
only by the provision of meteorological data at the 
lateral boundaries and surface conditions (e.g., 
topography, land surface type, sea-surface 
temperatures).  For the other two modes, internal 
forcing is also applied.  This internal forcing, also 
called interior nudging, is applied in two different 
ways called “analysis nudging” and “spectral 
nudging”.  The basis for all interior nudging is 
again the (AMIP-II) Reanalysis data, hereafter 
referred to as the R-2 data.   
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While analysis nudging on a fine grid based on 
much coarser information is known to damp high-
resolution features, analysis nudging was found to 
be generally superior to spectral nudging at the 
36-km scale with appropriate nudging parameters 
(Otte et al., 2012).  This study investigates further 
adjustments to those parameters for 12-km WRF 
applications.  Spectral nudging, when applied to 
appropriate wave numbers across the 12-km WRF 
domain, should not damp high resolution features 
like analysis nudging can.  This study also 
investigates adjustments to the spectral nudging 
parameters to achieve optimal performance. 

At the outset of this study, computational and 
data storage requirements for multi-year 12-km 
down-scaling were a concern.  Thus we applied 
our down-scaling to only the year of 2006 during 
which over 11 million hourly surface observations 
of temperature, humidity and wind were available 
for model evaluation.  We also used a limited 
horizontal model domain covering the United 
States east of the Rocky Mountains.  Computing 
times for these 12-km simulations were about five 
times as long per simulated year compared to the 
previous studies.  Nonetheless, a wide variety of 
tests were conducted to determine the most 
appropriate WRF model configuration for future 
long-term applications. 

 

2. MODEL DESCRIPTION 
 
The WRF model version 3.3.1 (WRF v3.3.1) 

was initialized at 0000 UTC 2 December 2005 to 
provide a 30-day spin-up time before the calendar 
year 2006 test period.  The model was run 
continuously through 0000 UTC 1 January 2007.  
WRF was run on the 12-km domain with the same 
34-layer configuration and 50 hPa model top used 
in Otte et al. (2012).  Initial and lateral boundary 
data were derived from their 36-km analysis-
nudged (“AN”) simulation using standard WRF 
software.  Input data for the lower boundary and 
for interior nudging (when applied) were the 2.5° × 
2.5° R-2 analyses.  

In general, the physics options used in Otte et 
al. (2012) are also used here. These include the 
Rapid Radiative Transfer Model for Global climate 
models (RRTMG; Iacono et al., 2008) for 
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longwave and shortwave radiation, the Yonsei 
University planetary boundary layer (PBL) scheme 
(Hong et al., 2006), and the Noah land-surface 
model (Chen and Dudhia, 2001). We also used 
the WRF single-moment 6-class microphysics 
scheme (Hong and Lim 2006) in most of the 12-
km simulations, but instead applied the Morrison 
double-moment scheme (Morrison et al., 2009) in 
two separate sensitivity tests.  Most of the 12-km 
simulations used the Grell-3 convective 
parameterization scheme (Grell and Dévényi, 
2002), but we also applied the Kain-Fritsch 
scheme (Kain, 2004) to test sensitivity to sub-grid 
convective parameterization.   

Regarding interior nudging, three options were 
used:  no nudging, analysis nudging and spectral 
nudging.  Simulation test cases for which no 
interior nudging was used are designated with 
“NN”, cases where analysis nudging was used are 
designated with “AN”, and cases where spectral 
nudging was used are designated with “SN”.   

The R-2 target data for nudging was of 
considerably coarser resolution (~250 km) than 
the 12-km model grid.  In general, weaker analysis 
nudging is recommended for finer-resolved model 
grids (Stauffer and Seaman, 1994).  Therefore we 
tested the analysis-nudging technique at 12-km 
resolution with nudging strengths varied between 
one-fourth and equal to the base values used by 
Otte et al. (2012) in their 36-km modeling.  
Analysis nudging was applied to horizontal wind 
components, potential temperature, and water 
vapor mixing ratio, and only above the planetary 
boundary layer (PBL).   

Spectral nudging is scale selective based on 
selected maximum wave numbers in a spectral 
decomposition of the difference (target minus 
model) field.  Spectral nudging was applied to the 
horizontal wind components, potential 
temperature, and geopotential, and only above the 
PBL.  Sensitivity to the spectral nudging 
coefficients was tested with simulations using one-
half and twice the base values chosen for 12-km 
modeling.  A maximum wave number of two was 
selected for both horizontal dimensions to account 
for the small size of the 12-km domain and the 
limited resolution power of the R-2 data. 

 

3. RESOLUTION OF SURFACE FEATURES 
 
With the very first simulation of WRF at 12-km 

resolution the water temperature of inland lakes 
was an issue requiring attention.  The standard 
method for setting lake surface temperatures in 
WRF uses a nearest-neighbor approach and sea-
surface temperature data from the lower boundary 

input data.  Strong discontinuities in the 
temperature of inland lakes were produced by this 
standard method.  The Great Lakes are not 
resolved in the R-2 data. Many inland lakes in the 
central United States were assigned unreasonably 
warm water temperatures from the Gulf of Mexico.  
Other lakes just a short distance north were 
assigned cold water temperatures from James 
Bay.   Another discontinuity running north-to-south 
across extreme eastern Lake Erie was also 
generated by this nearest-neighbor approach.   

An alternative method for setting inland lake 
water temperatures was also tested.  WRF 
Preprocessing System (WPS) software includes 
utility programs to set lake temperatures based on 
time-averaged surface air temperature.  Fields of 
average surface air temperature were created for 
each month, starting in the month before the WRF 
simulation (November 2005).  These fields of 
previous monthly average temperature were used 
to set all inland lake surface temperatures.  While 
this did provide lake temperatures generally more 
reasonable at the start of the test period, other 
problems appeared later in the simulation.  The 
alternate method produced a complete freeze-up 
of all Great Lakes by March.  The Great Lakes 
might be better resolved by higher-resolution 
global GCMs, but smaller inland lakes will 
continue to remain unresolved and adversely 
affect simulations of meso-scale meteorology.  We 
are currently working to realistically simulate within 
WRF the exchanges of thermal energy between 
lakes and the atmosphere above. 

 

4. EVALUATION 
 
4.1 Comparison to MADIS Surface Data 

 
Previous down-scaling to 36-km resolution by 

Otte et al. (2012) used North American Regional 
Reanalysis (NARR) data at 32-km resolution to 
evaluate results.  More highly resolved “ground-
truth” data were required for this effort.  Hourly 
observations of temperature, humidity and wind 
from the NOAA Meteorological Assimilation Data 
Ingest System (MADIS) were used.  These data 
represent over 11,000,000 hourly observations 
across the 12-km WRF modeling domain during 
2006.  Comparisons of simulated and observed 
data were made using the Atmospheric Model 
Evaluation Tool (AMET) described in Appel et al. 
(2011).  

The first evaluations performed were intended 
to gauge the improvements offered by 12-km WRF 
modeling over the previous 36-km results.  As 
mentioned previously, the 36-km WRF results 
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obtained with analysis nudging (AN) were deemed 
generally superior and were used to define the 
lateral boundary values for the 12-km modeling.  

 Figure 1 shows seasonal evaluations of mean 
bias and correlation for the parent 36-km WRF 
simulation and our base-case 12-km nested 
simulations with no interior nudging (NN), with 
analysis nudging (AN), and with spectral nudging 
(SN).  Statistics in this comparison were based on 
model-observation pairs confined to a lat/lon 
window approximating the 12-km domain.  Physics 
options in these base-case 12-km simulations 
were the same used in the 36-km study.  Three-
month seasons are defined as January-March 
(season 1) to October-December (season 4).  

In general, the 12-km simulation with no 
interior nudging (NN) is less correlated to the 
observations and has greater error than the parent 
36-km AN simulation.  However, analysis or 
spectral nudging at 12-km resolution does improve 
these statistics for 2-meter temperature and, to a 
 
 

Fig. 1. Seasonal evaluations of mean bias and 
correlation for the 36-km parent simulation and the 12-
km no-nudge (NN), analysis-nudge (AN) and spectral-
nudge (SN) simulations. 

limited degree, 10-meter wind speed.  This 
improvement with interior nudging is consistent 
with the results of Bowden et al. (2012), who found 
that nudging on the nested interior domain was 
necessary.  A positive bias in water vapor is 
apparent in all runs and this bias is stronger in all 
of the 12-km simulations.  This suggests that 
some physics options used at 36-km resolution 
might not be optimal for 12-km modeling.  This 
issue is addressed in sensitivity tests described 
below. 

 
4.2 Comparison to MPE Precipitation Data 

 
Because of the high bias found for surface-

level water vapor, it was critical to also investigate 
the simulated precipitation amounts.  The 
Multisensor Precipitation Estimator (MPE) is a 
precipitation analysis system used by National 
Weather Service River Forecast Centers to 
produce gridded precipitation estimates for various 
hydrological applications.  Observational data 
sources include weather radar data, automated 
rain gauges and satellite remote sensors.  We 
obtained “Stage IV” data sets from the Earth 
Observing Laboratory at the National Center for 
Atmospheric Research.  These provided hourly  

 

 
Fig. 2.  Monthly mean bias and mean absolute error for 
WRF simulations as compared to the MPE precipitation 
data. 
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precipitation analyses at 4-km horizontal resolution 
that we re-analyzed to our 12-km and 36-km 
modeling domains using standard WRF 
Preprocessing System (WPS) software. 

Figure 2 shows graphs of monthly mean bias 
and mean absolute error of WRF simulations 
compared to the MPE data.  Hourly grids of MPE 
and WRF data were used to compile monthly 
statistics, thus the units for each of these graphs 
are mm hr

-1
.  It should be noted that the MPE data 

covered most, but not all, of the 12-km modeling 
domain.  Also, the 36-km WRF simulation (from 
Otte et al. 2012) was truncated to the 12-km 
modeling domain to allow for proper comparison.  
All of the WRF simulations show a positive bias in 
precipitation for all months, with the greatest 
magnitudes in the summer months, especially 
July.  The 12-km simulations show higher positive 
bias than the 36-km case in nearly all instances.  
The positive bias is most obvious for the no-nudge 
12-km case.  There was not as much difference in 
mean absolute error between the simulations.  
However, once again the 12-km cases showed 
greater deviation from the MPE data, especially 
when no nudging was applied. 

Because the positive bias in simulated 
precipitation was most pronounced in the month of 
July, this month was chosen for further inspection.  
Figure 3 shows maps of mean bias in July 2006 
for all four WRF simulations.  The areal extent of 
the MPE data is evident in these plots.  Also 
evident is an artificial gradient in MPE-indicated 
precipitation over the Atlantic continental shelf at 
the radial limit of weather radar coverage.  This 
region over the Gulf Stream is known to 
experience strong convection and heavy  
 

Fig. 3.  Spatial maps of mean bias in simulated 
precipitation for July 2006 from the 36-km resolution 
WRF applying analysis nudging (36-km AN) and the 12-
km WRF applying no nudging (12-km NN), analysis 
nudging (12-km AN) and spectral nudging (12-km SN).  

precipitation that the MPE analysis does not 
appear to resolve well without radar guidance.  
The result is a very large spurious positive bias 
indicated for the WRF simulations in these 
locations that may be affecting the domain-wide 
statistics to some degree.   

Over most land areas, precipitation bias is 
relatively moderate but still generally positive.  The 
strong negative bias in the Northeast and New 
England regions is the result of spurious heavy 
precipitation indicated in the MPE data for only 
one or two hours during the month.  It appears that 
more quality control is needed in the MPE data 
before any detailed analysis of model bias and 
error is possible for particular areas.  Nonetheless, 
the work of Bowden et al. (2012) showed a strong 
tendency for the 36-km WRF to over-estimate 
precipitation in the Southeast region, especially in 
summer.  This same over-estimation is evident in 
Figure 3 for the 36-km AN case.  This positive bias 
is still quite evident in the 12-km NN case, but it 
appears to be moderated slightly by analysis 
nudging and reduced to a greater degree by 
spectral nudging. 

 
4.3 Adjustments to Nudging Strength 

 
As mentioned before, weaker nudging is 

recommended for WRF applications at finer 
scales.  The values chosen for our base-case 12-
km WRF simulations were reduced from those 
previously used for 36-km modeling, but that 

 

 
Fig. 4.  Seasonal mean absolute error for WRF 
simulations testing nudging strength for analysis 
nudging (AN) and spectral nudging (SN).  Low nudging 
strength is one-half the base value.  High nudging 
strength is twice the base value. 
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reduction was somewhat arbitrary.  To test model 
sensitivity to the choice of these analysis-nudging 
and spectral-nudging coefficients, values of one-
half and twice the base values were also applied.  
Figure 4 shows seasonal mean absolute error for 
all six test cases (3 for analysis nudging, 3 for 
spectral nudging) for temperature, water vapor 
mixing ratio and wind speed.   

Generally, the difference in model accuracy 
was very small for all three variables.  
Nonetheless, with only one exception, the base-
value coefficients for both analysis and spectral 
nudging produced the lowest error in temperature 
for every season.  But the same cannot be said for 
water vapor or wind speed.  In season 3, water 
vapor error increased as nudging strength 
increased for both nudging methods.  In season 4, 
water vapor error decreased with increasing 
analysis nudging strength.  Note that nudging of 
water vapor is not performed with the spectral 
method.  Nudging of water vapor has always been 
somewhat controversial and an in-depth 
investigation of the cause of these effects was not 
undertaken because of the relatively small 
differences in accuracy found.  For wind speed, 
increasing the nudging strength nearly always 
resulted in an increase in mean absolute error.  
However, once again the changes in accuracy 
were relatively small. 

Looking at mean bias, the results shown in 
Figure 5 suggest that model biases in water vapor 
and wind speed are increasingly corrected by both 

 
 

Fig. 5.  Seasonal mean bias for WRF simulations testing 
nudging strength for analysis (AN) and spectral (SN) 
nudging.  Low nudging strength is one-half the base 
value.  High nudging strength is twice the base value. 

forms of nudging, analysis and spectral, as the 
nudging strength is increased.  For temperature, 
this pattern of increasing correction of bias with 
increasing nudging strength only holds for season 
4.  For all other seasons, temperature bias is 
actually increased with stronger analysis nudging 
and mostly unaffected by changes in the strength 
of spectral nudging.  The sensitivity of wind speed 
bias to nudging strength is rather low, but the 
general high bias in water vapor mixing ratio is 
more significantly corrected by stronger analysis 
or spectral nudging.  Because water vapor is 
directly nudged in the analysis-nudging method, 
this result can be expected.  However, the link 
between stronger spectral nudging (of 
temperature, wind and geopotential height) and 
reduced bias in water vapor is not direct and 
suggests complex interactions of model physics. 
 

4.4 Alternate Physics Options 
 
Our base physics options included use of the 

Grell-3 sub-grid convection scheme.  To test 
model sensitivity to this choice, we conducted test 
simulations using the Kain-Fritsch (K-F) scheme 
instead.  No interior nudging was applied for either 
case so that the effect of the convective 
parameterizations could be better discerned.  The 
results showed little difference in mean absolute 
error for temperature, water vapor mixing ratio or 
wind speed.  The small differences that were 
noted suggest that the Grell-3 scheme was slightly 
superior. 

Our base physics options also included use of 
the WRF Single-Moment 6-Class microphysics 
scheme (Hong and Lim 2006).  To test model 
sensitivity, we instead applied the Morrison 
Double-Moment scheme (Morrison et al., 2009).  
Again, no interior nudging was applied for either of 
these simulations.   

Figure 6 shows seasonal mean absolute error 
in temperature, water vapor mixing ratio and wind 
speed resulting from these two options.  The 

 

 
Fig. 6.  Seasonal mean absolute error for simulations 
testing sensitivity to cloud microphysics scheme 
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Fig. 7.  Seasonal mean bias for simulations testing 
sensitivity to cloud microphysics scheme 

 
Morrison scheme shows higher error in 
temperature, especially in season 3 (July-Sept).  
However, the error in water vapor is down slightly 
for all seasons except season 3.   

Figure 7 shows seasonal bias results where 
the Morrison scheme is too cool in the warm 
seasons (seasons 2 and 3).  The Morrison 
scheme also reduced the high bias in water vapor, 
especially in season 3.  It appears that the lower 
surface temperatures resulting from the Morrison 
scheme may be causing less evaporation and thus 
lower water vapor mixing ratios.  Correlation of 
simulated and observed temperature (not shown) 
was slightly lower in all seasons with the Morrison 
scheme, whereas correlation for water vapor and 
wind speed were little changed. 
 

5. DISCUSSION AND SUMMARY 

This work has attempted to apply a dynamical 
down-scaling technique previously developed for 
36-km horizontal resolution to a finer 12-km 
resolution. While a variety of technical issues were 
encountered, the technique does appear to allow 
further refinement as long as proper adjustments 
are made to the interior nudging parameters.  The 
exact adjustments that must be made depend on 
the seasons and meteorological variables of 
interest.  It is clear that interior nudging is required 
in order to provide additional accuracy from down-
scaling to 12-km resolution.   

Optimum simulation of water vapor mixing 
ratio and precipitation at 12-km resolution may 
require a change in physics options from those 
applied previously at 36-km resolution.  At 12-km 
resolution, we are near the point where larger 
convective elements may be resolved and the use 
of standard sub-grid convective parameterizations 
may be leading to positive precipitation bias 
through a sort of “double-counting” of precipitation 
mechanisms. 

We intend to move forward with long-term 
applications of 12-km dynamical down-scaling with 

WRF once the issue of inland lake surface 
temperatures has been properly addressed.  The 
computational and data storage resources 
required for 10- or 20-year simulations at 12-km 
resolution are daunting.  However, more spatially 
refined climate projections have been identified as 
a critical need by hydrologic and urban air quality 
managers.   
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