

High Resolution Source Attribution of PM Health Impacts with the CMAQ Adjoint Model

CMAS 2011

Turner, M.¹; Henze, D.¹; Hakami, A.²; Zhao, S.²; Resler, J.³; Carmichael, G.⁴; Stanier, C.⁴; Baek, J.⁴; Saide, P.⁴; Sandu, A.⁵; Russel, A.⁶; Jeong, G.⁶; Nenes, A.⁶; Capps, S.⁶; Percell, P.⁷; Pinder, R.⁸; Napelenok, S.⁸; Pye, H.⁸; Bash, J.⁸; Chai, T.⁹; Byun, D.⁹

¹University of Colorado at Boulder; ²Carleton University; ³ICS Prague; ⁴University of Iowa; ⁵Virginia Tech; ⁶Georgia Tech; ⁷University of Houston; ⁸USEPA; ⁹NOAA

October 26, 2011

This research is supported through NASA Applied Sciences Program grant NNX09AN77G.

What is Black Carbon?

- Component of PM_{2.5}
 produced by incomplete
 combustion of fossil-fuel,
 bio-fuel, and open biomass
 burning.
- Light-absorbing particles
- Commonly called "soot"
- PM_{2.5} mixtures with higher BC percentage may have greater effects on mortality (Cooke et al., 2007)

Smoke billowing from a plant in Copsa Mica, Romania. Photograph: Andrew Holbrooke/Corbis. Source: The Guardian

Where is it Coming From?

EPA AIRNow June 07, 2011

MODIS June 07, 2011

Co-benefits of Reducing BC

- Health effects of BC
- Effects on climate change.
- BC is short-lived climate forcer
 - "Reducing black carbon...now will slow the rate of climate change within the first half of this century" (UNEP, 2011).
 - "A small number of emission reduction measures targeting black carbon...could immediately begin to protect climate, [and] public health" (UNEP, 2011).

Schematic representation of BC effect on Arctic melting

Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers (UNEP, 2011)

Adjoint Models

- Forward sensitivity analysis are source-based
- Adjoint method provides receptor-based sensitivities
- Adjoint method has 2 main advantages over FD:
 - Quickly calculate sensitivities with respect to all model parameters (sources) at the same time.

Don't need multiple forward runs

Adjoint Validation

- Validate adjoint by comparing Finite Difference sensitivities to Adjoint sensitivities.
- Finite Difference:
 - —Run simulation --> store output values
 - –Run simulation after perturbing parameter --> store output values
 - -FD = (Perturbed output base output) / perturbation
- Adjoint:
 - -Specify adjoint forcing (what drives adjoint model)
 - -Run simulation

Aerosol Dynamics - Full Model

Black Carbon Analysis

AECJ Emissions

AECJ Concentrations

Black Carbon Analysis - Balt.

Health Impact Function: $\Delta Mort = y_0(1 - exp^{-\beta \Delta X})Pop$

- y_0 = baseline mortality rate, 1.02 (Calculated from Maryland Vital Statistics)
- ß = Concentration Response Factor, 0.005827 (calculated from Relative Risk from Annenberg et al. 2011. PM_{2.5} only)
- X = concentration (microgram per cubic meter for BC)
- Pop = population, 636,919 (Baltimore, MD. 2008 Maryland Vital Statistics)

J = Health Impact Function = 2.05
Adjoint model driven by: $\frac{\partial Mort}{\partial X} = \beta * y_0 * Pop * exp^{-\beta X}$

Black Carbon Analysis - Balt.

Sensitivity of mortalities caused by black carbon in Baltimore, MD with respect to black carbon emissions. April 3, 2008, 7:00 PM Local to April 4, 2008, 7:00 PM Local

$$\frac{\partial J}{\partial E_{i,j,k}} \frac{E_{i,j,k}}{J} \times 100\%$$

Black Carbon Analysis - NY

Health Impact Function: $\Delta Mort = y_0(1 - exp^{-\beta \Delta X})Pop$

- y_0 = baseline mortality rate, 0.634 (Calculated from NY Vital Statistics)
- ß = Concentration Response Factor, 0.005827 (calculated from Relative Risk from Annenberg et al. 2011. PM_{2.5} only)
- X = concentration (microgram per cubic meter for BC)
- Pop = population, 8,363,710 (NY, NY. 2008 New York Vital Statistics)

J = Health Impact Function = 36.96
Adjoint model driven by: $\frac{\partial Mort}{\partial X} = \beta * y_0 * Pop * exp^{-\beta X}$

Black Carbon Analysis - NY

Summary

Summary

- Adjoint of CMAQ aerosol module has been developed and validated for black carbon.
- Sensitivities with respect to emissions have been obtained for single day simulations for Baltimore, MD and New York city.
 - Mortalities in Baltimore caused by exposure to black carbon most sensitive to emissions in Baltimore down through DC.
 - –Mortalities in New York city caused by exposure to black carbon most sensitive to emissions in New York City and and into Newark and New Brunswick, NJ.

13

Future Work

- Expand Black Carbon simulation time period to 4 months.
 - Average over 4 day periods (atmospheric lifetime of BC).
- Run simulations for various regions and cities.
 - Requires gridded baseline mortality rates and gridded populations for cost functions consisting of a range of cells.