SOURCE ATTRIBUTION OF AIR POLLUTION ABATEMENT HEALTH BENEFITS

2011 CMAS Conference

Amanda Pappin, Amir Hakami

Carleton University

October 26, 2011

OPTIMAL CONTROL STRATEGY DESIGN

What are the impacts of *specific* emission sources on:

- Climate change (GHGs)?
- Air quality and human health (criteria pollutants)?
 - Sensitivity questions by nature
- Backward (adjoint) sensitivity modeling can provide an answer if health benefit assessment tools are integrated with air quality modeling

PRESENTATION OVERVIEW

- Background
 Estimating health benefits
 Adjoint sensitivity analysis
- Results

Health benefit sensitivities

Potential policy applications

BACKGROUND

HEALTH BENEFITS IN CANADA

(Modified from Health Canada, 2008)

Air Quality Benefits Assessment Tool (AQBAT)

- Criteria Air Contaminants: PM_{2.5}, O₃, NO₂, SO₂, CO
- Monetary valuation of health endpoints to allow for benefit-cost analysis
 → dollar benefits

ADJOINT SENSITIVITY ANALYSIS

Estimating the impacts of individual sources on human health

Backward (Adjoint) Analysis

Sensitivity:
$$\frac{\delta y_j}{\delta x_{1,N}}$$

- Sensitivity of a small number of outputs with respect to a large number of inputs
- Receptor-based but differentiates between source impacts

MAKING USE OF ADJOINT SENSITIVITIES

Sensitivity of what?

• Mortality in Canada (integrated across receptors)

Sensitivity to what?

Anthropogenic NO_X emissions at each location

AQBAT Sensitivity:
$$\frac{\Delta\$}{\Delta C}$$
 \rightarrow Combined Sensitivity: $\frac{\Delta\$}{\Delta E}$ CMAQ-Adjoint Sensitivity: $\frac{\Delta C}{\Delta E}$

ADJOINT TERMS

Adjoint cost function:

$$J = Mortality = M$$

$$J = \sum_{i,j=1}^{N} \left(M_{0_{i,j}} \cdot POP_{i,j} \cdot \left(\beta_{O_3} \Delta C_{O_3} + \beta_{NO_2} \Delta C_{NO_2} \right) \right)$$

Adjoint forcing term:

$$\frac{\Delta M}{\Delta C} \approx \frac{\delta J}{\delta C} = M_0 \cdot POP \cdot \beta$$

 $\beta_{O_3} = 8.39 \cdot 10^{-4} \, ppb^{-1}$ 1-hr maximum $\beta_{NO_2} = 7.48 \cdot 10^{-4} \, ppb^{-1}$ 24-hr average

MODELING CASE

Continental domain

- 36 km resolution
- 13 vertical layers
- Gas-phase CMAQ-Adjoint
- July-September 2007 modeling period (90 days)

SENSITIVITY RESULTS

DAILY HEALTH BENEFITS: 03

MAX = \$33.8 M/DAY, MONTREAL

11

DAILY HEALTH BENEFITS: NO₂

MAX = \$32.5 M/DAY, TORONTO

TOTAL DAILY HEALTH BENEFITS

MAX: \$41.7M/DAY, MONTREAL ATLANTA & HOUSTON = \$1.1M/DAY, LOS ANGELES = \$0.6M/DAY

VARIABILITY IN HEALTH BENEFITS

DAILY UNIT REDUCTION HEALTH BENEFITS

MAX: \$3,400/DAY, MONTREAL TORONTO = \$1,100/DAY, OTTAWA = \$1,500/DAY

15

EFFECT OF AVERAGING PERIOD

POLICY APPLICATIONS

1. PUBLIC TRANSPORTATION SYSTEMS

What are the health benefits of the Toronto subway system?

- Annual vehicle reduction (@ 11,000 miles/vehicle-yr): → 302,000
- NO_X emissions reduction \rightarrow 2,000 tonnes/yr (2007)
- \$1,100 benefit/day per 1 tonne NO_X reduction in Toronto

\$800M benefit/yr compared to without the subway system

2. PERSONAL VEHICLES

What is the health cost associated with personal vehicles in major Canadian cities?

- 1 tonne $NO_{\chi}/yr \approx 110$ vehicles (2007)
- Toronto: \$3,800/yr per vehicle
- Ottawa: \$5,000/yr per vehicle
- Montreal: \$11,000/yr per vehicle

3. CAP-AND-TRADE

What is the Benefit-to-Permit Cost ratio for a Canadian power plant operating under NO_X cap-and-trade?

 NO_X permit price in the U.S. (2009) \approx \$2,000/tonne NO_X /yr

Nanticoke Generating Station, Ontario

- \rightarrow 2,760 MW coal-fired power plant
- \rightarrow 38,000 tonnes NO_X/yr emitted
- \rightarrow \$1,100 benefit/day per tonne NO_X

Health benefits are 200 times the cost of emissions permits!

CONCLUDING REMARKS

- Health benefits are vastly undervalued in current regulatory frameworks
- Intercontinental transport does not tell the whole story
- There is benefit to be seen from Canadian pollution control
- The source-specificity of adjoint modeling makes it very relevant to policy decision-making

FUTURE RESEARCH

- Sectoral analysis of health benefits
- Taking advantage of temporal variability in health benefit sensitivities

Acknowledgements:

Stan Judek Health Canada

Funding: National Science and Engineering Research Council

THANK YOU FOR YOUR ATTENTION