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1. INTRODUCTION 
 
This presentation continues a decade-long 

study of CMAQ behavior when compiled and 
executed with vendor-supported compilers on 
commodity hardware platforms. In the past CMAQ 
has been ported to compilers from the Portland 
Group® [PGI] and (more recently) the Intel 
Corporation® [INTEL]. We propose that the time 
has come to add other compilers to the CMAQ 
fold: specifically new results are presented for 
Absoft Fortran from the Absoft Corporation® 
[ABSOFT]. A great deal has changed over ten 
years in compiler development, and while 
compilers from different vendors tend to leap-frog 
each other in performance, all have undergone 
ground-breaking evolution in following hardware 
developments. These developments are not 
reflected in the limited choice of compilers and the 
options available in the standard releases from the 
CMAS Center download site [CMAS]. 

This report presents results of comparing 
standard U.S. EPA and the multithreaded version 
of CMAQ developed by HiPERiSM Consulting, 
LLC, for multi-core processors with three 
compilers on two platforms (Delic, 2009, 2010). 
The Rosenbrock (ROS3) chemistry solver version 
of CMAQ 4.7.1 is chosen for this analysis because 
it offers the best potential for parallel performance. 

The ROS3-HC code is a hybrid parallel model 
with three levels of parallelism. The (outer) 
Message Passing Interface (MPI) level is the one 
previously delivered in the standard U.S. EPA 
distribution. The (inner) parallel layers developed 
at HiPERiSM have added both thread-level 
parallelism and instruction-level parallelism (at the 
vector loop level). This report examines 
parallelism in CMAQ at the MPI and the thread 
levels. 

 
2. CHOICE OF PLATFORMS 

 
2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 

                                                      
* Corresponding author: George Delic, 
george@hiperism.com. 

Table 2.1. Each of the two platforms, Intel and 
Advanced Micro Devices (AMD), have a total of 8 
and 48 cores, respectively. This cluster is used for 
either MPI only, or hybrid thread-parallel OpenMP 
plus MPI execution, and results for both modes 
are reported below. 
 
Table 2.1. Platforms at HiPERiSM Consulting, LLC 

Platform  AMD  Intel 

Processor AMD�™ Opteron 
6176SE 

Intel�™ IA32 
W5590 

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3 
Power consumption 105 Watts 130 Watts 
Cores per processor 12 4 

Power consumption per core 8.75 Watts 32.5 Watts 
Processor count 4 2 
Total core count 48 8 

Clock 2.3GHz 3.33GHz 
Band-width 42.7 GB/sec 64.0 GB/sec 

Bus speed 1333 MHz  1333 MHz 

L1 cache 64KB 64KB 
L2 cache 512 KB(1) 256MB 

L3 cache(2) 12MB 8MB 
(1) Per core, (2) Per socket 

 
2.2 Compilers 
 

This report concurrently evaluates the latest 
compiler versions from Intel (12.0), Portland (11.5) 
and Absoft (11.1) for CMAQ 4.7.1 on 64-bit Linux 
operating systems using top-of-the-line 
performance hardware from Intel and AMD. The 
U.S. EPA and ROS3-HC multi-threaded parallel 
version were compiled and executed with all three 
compilers on both platforms shown in Table 2.1. 

For each compiler several groups of 
optimization switches were test, but only a few are 
selected for presentation here. These correspond 
to two groups for Absoft (abs3 and abs4), and one 
respectively for Intel (ifc) and Portland (pgf) 
compilers. For each compiler group this analysis 
included new builds of CMAQ support libraries 
such as NetCDF, IOAPI, MPICH, STENEX and 
PARIO. In each case compiler options have been 
chosen after extensive research into three areas 
of fundamental significance for CMAQ: the 
memory model, numerical precision, and time to 
completion. This study found that although the 
highest optimization levels produce the shorter 
runtimes, in some cases they also introduce 
numerical differences that compromise numerical 
precision for a small (10%) subset of the species 
concentration value population. This observation 
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leads to a choice of more conservative compiler 
option groups. Details of compiler options are 
available from the author. 

 
3. EPISODE STUDIED 
 

For all CMAQ 4.7.1 results reported here the 
model episode selected was for August 09, 2006, 
using data provided by the U.S. EPA. This episode 
has the CB05 mechanism with Chlorine 
extensions and the Aero 4 version for PM 
modeling. The episode was run for a full 24 hour 
scenario on a 279 X 240 Eastern US domain at 12 
Km grid spacing and 34 vertical layers. 
 
4. RESULTS FOR U.S. EPA’s CMAQ 4.7.1  

 
4.1 Serial runtime results 
 

Fig 4.1 shows the serial (one MPI process) 
runtime results for U.S. EPA�’s CMAQ 4.7.1 
release with the three compilers introduced in 
Section 2.2. The numerical values are shown in 
Table 5.1. The values for the AMD platform shown 
in Fig 4.1 have been reduced by a half to better fit 
the figure scale. The AMD Absoft compiler group 
abs4 is not yet completed. 

On the Intel platform, the Intel compiler 
delivers, the shortest runtime (25.1 hours) followed 
closely by the Absoft compiler (25.9 hours) with 
group abs4. On the AMD platform Absoft (52.3 
hours) outperforms both Intel and Portland 
compilers even with the lower optimization choice 
(abs3). The difference between Intel and AMD 
platforms (e.g. 27.1 versus 52.3 hours for group 
abs3) is mainly due to the differences in clock 
speed, bandwidth, and cache size (Table 2.1). 
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Fig 4.1: Serial runtime (in hours) for CMAQ 4.7.1 in the 
U.S. EPA release of the ROS3 solver for the Intel and 
AMD platforms. The AMD results have been reduced by 
a factor of 2 to better fit the scale of the figure. 

 
4.2 MPI Performance  
 

The remaining results discussed in this section 
are for the Portland compiler on Intel and AMD 
platforms. MPI results for Intel and Absoft 
compilers are in progress and will be reported at a 
later date. For fastest MPI runtimes all tests are 
performed locally (i.e. on-node) to avoid any 
interconnect latency issues, using 8 to 48 MPI 
processes. The Intel platform is limited to 8 cores 
whereas the AMD platform has up to 48 cores. 

Typical runtime results for the standard U.S. 
EPA distribution of CMAQ 4.7.1 are shown in 
Table 4.1 for Intel and AMD platforms with the 
Portland�™ compiler. 
 
Table 4.1. Wall clock times (in hours), MPI parallel 
speedup, and MPI efficiency, for the CMAQ Rosenbrock 
solver. This is for the U.S. EPA�’s standard release of 
CMAQ 4.7.1 on HiPERiSM�’s Intel and AMD platforms 
for the Portland compiler group pgf. 

Time in 
hours (EPA) 

MPI speedup 
versus NP=1 

MPI parallel 
efficiency 

Col x Row 
= NP 

Intel AMD Intel AMD Intel AMD 
1 x 1 = 1 27.4 54.4 1.00 1.00 1.00 1.00 
1 x 2 = 2 15.6 29.2 1.76 1.86 0.88 0.93 
2 x 2 = 4 8.5 15.7 3.22 3.47 0.81 0.87 
2 x 4 = 8 5.1 8.5 5.39 6.41 0.67 0.80 

4 x 4 = 16  4.41  12.3  0.77 
4 x 8 = 32  2.49  21.9  0.68 

 
Results on both platforms show that CMAQ gains 
from the evolution of commodity computer 
architectures. It is interesting to note that the AMD 
platform with 8 cores equals the performance of 
the Intel platform with 4 cores and exceeds it with 
8 (Intel) versus 16 (AMD) cores.  
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Fig 4.2: MPI parallel speedup with the Portland compiler 
for CMAQ4.7.1 in the U.S. EPA release of the ROS3 
solver for the AMD platform. 
 

Using the results of Table 4.1, Fig. 4.2 shows 
the MPI parallel speedup. This displays an 
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increasing divergence from linearity with 
increasing number of MPI processes and is best 
analyzed by inspecting MPI parallel efficiency. 
 
4.3 MPI Efficiency 
 
This section presents MPI parallel efficiency 
results for the Rosenbrock (ROS3) chemistry 
solver in the U.S. EPA version of CMAQ 4.7.1. 
The MPI parallel efficiency shown in Table 4.1 is 
the MPI speedup divided by the number of MPI 
processes. Fig. 4.3 summarizes CMAQ 4.7.1 MPI 
parallel efficiency (and inefficiency) with increasing 
process count. From the logarithmic scale on the 
abscissa it is clear that the ROS3 solver shows an 
exponential decline in MPI parallel efficiency when 
NP>1. Using the extrapolation shown in Fig. 4.3 
the asymptote of parallel efficiency is of the order 
of 60% for 64 MPI processes where CPUs are idle 
for 40% of the wall clock time (on average). 
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Fig 4.3: MPI parallel efficiency (and inefficiency) for 
CMAQ4.7.1 in the U.S. EPA release of the ROS3 solver 
for the AMD platform. Note the logarithmic scale on 
the abscissa. 
 

Efficiency and inefficiency may be translated 
to the average utilization and idle times and these 
are shown in Fig. 4.4 as a percentage of the total 
runtime at each MPI process count. While 
decrease in runtime for CMAQ 4.7.1 is dramatic 
with increasing MPI process count, the 
corresponding increase in idle time is relentless. 
The trend line in Fig. 4.3 suggests a decline to 
40% MPI parallel efficiency in the next decade of 
the abscissa�’s logarithmic scale (100-1000). Using 
80% as an acceptable efficiency threshold, Table 
4.1 suggests a maximum allowable MPI process 
count on each platform of 4 (Intel) and 8-16 
(AMD), respectively. 
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Fig 4.4: MPI parallel runtime, percent utilization and idle 
time, for CMAQ4.7.1 in the U.S. EPA release of the 
ROS3 solver for the AMD platform. Two trend lines are 
included. The ordinate represents both hours for runtime 
and percent for utilization and idle time fractions. Note 
the logarithmic scale on the abscissa. 
 
5. HYBRID OpenMP+MPI RESULTS 
 
5.1 CMAQ runtime 
 

Results for runtime in the hybrid 
MPI+OpenMP version of CMAQ 4.71.1 with three 
compilers, are presented here for the parameter 
choices BLKSIZE=1536 and NCMAX=48. For a 
discussion of these parameters see the previous 
reports in this series (Delic, 2009,2010).  Table 5.1 
summarizes the CMAQ 4.7.1 results for runtime 
(in hours) for the case of one MPI process. 
 
Table 5.1. Wall clock times (in hours) for the U.S. EPA 
(ROS3-EPA) and hybrid MPI+OpenMP (ROS3-HC) 
versions of CMAQ 4.7. The platforms are Intel and AMD 
for the Absoft (abs3, abs4), Intel (ifc) and Portland (pgf) 
compilers. 

ROS3-HC 
Time in hours by thread count 

Compiler 
group 

P
latform

 

ROS3-
EPA 

1 4 8 12 16 

abs3 27.1 36.1 21.8 19.3   
abs4 25.9 35.8 21.1 18.7   

ifc 25.1 29.4 21.3 19.2   
pgf 

Intel 

27.4 31.1 23.3 21.9   
abs3 52.3 67.5 43.1 38.3 37.2 35.4 

ifc 53.7 63.2 45.5 40.7 40.2 39.0 

pgf 

A
M

D
 

54.4 60.9 44.4 43.0   

 
In this table execution times of the standard 

U.S. EPA release are in the column labeled 
ROS3-EPA. Columns under the label ROS3-HC 
show results of the hybrid MPI+OpenMP CMAQ 
4.7.1 version with the Rosenbrock solver. The 
rows correspond to the different compiler choices 
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for an MPI process count of 1 and the thread 
count is the number appearing under the column 
labeled as ROS3-HC. The blank cells indicate that 
results are not yet available at this time, or are 
limited by 8 cores per node on the Intel platform. 

For the CMAQ hybrid parallel version ROS3-
HC Figs 5.1 and 5.2 respectively show the Intel 
and AMD platform results of Table 5.1 for 1, 4, and 
8 cores. The best times with 8 threads are those 
for the Absoft compiler, and, although gains are 
less when more threads are added, this lead 
increases. 
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Fig 5.1: For the Intel platform with a thread count of 1, 4, 
and 8, this shows the OpenMP parallel runtime (in 
hours) for CMAQ 4.7.1 in the hybrid parallel version of 
the ROS3-HC solver for the Absoft (abs3, abs4), Intel 
(ifc) and Portland (pgf) compilers. 
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Fig 5.2: For the AMD platform with a thread count of 1, 
4, and 8, this shows the OpenMP parallel runtime (in 
hours)  for CMAQ 4.7.1 in the hybrid parallel version of 
the ROS3-HC solver for the Absoft (abs3), Intel (ifc) and 
Portland (pgf) compilers. 
 
5.2 CMAQ OpenMP speedup vs U.S. EPA 
 
In this section, and the next, two performance 
metrics are introduced to assess thread parallel 
performance in the ROS3-HC modified code: 

(a) Speedup is the gain in runtime over the 
standard U.S. EPA runtime, 

(b) Scaling is the gain in runtime for thread 
counts larger than 1, relative to the result 
for a single thread. 

 
For the hybrid MPI+OpenMP modified CMAQ 

version with the Rosenbrock solver, Table 5.2 
shows the speedup metric corresponding to the 
runtimes in Table 5.1. Figs 5.3 and 5.4, 
respectively, show the speedup results of Table 
5.2 on the Intel and AMD platform for 1 to 16 
cores. Note the doubling of the abscissa scale in 
Fig. 5.4 for the AMD case. This shows clearly the 
growing Absoft advantage with increasing thread 
count on both Intel and AMD platforms. 
 
Table 5.2. OpenMP speedup of the hybrid 
MPI+OpenMP (ROS3-HC) version over the U.S. EPA 
release of CMAQ 4.7.1. The platforms are Intel and 
AMD for the Absoft (abs3, abs4), Intel (ifc) and Portland 
(pgf) compilers. 

ROS3-HC 
Speedup by thread count 

Compiler 
group 

P
latform

 1 4 8 12 16 

abs3 0.75 1.24 1.40   
abs4 0.72 1.23 1.39   

ifc 0.85 1.18 1.31   
pgf 

Intel 

0.88 1.18 1.25   
abs3 0.77 1.21 1.37 1.40 1.48 

ifc 0.85 1.18 1.32 1.33 1.38 

pgf 

A
M

D
 

0.89 1.23 1.27   

 

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 4 8
Number of OpenMP threads

abs3
abs4
ifc
pgf

 
Fig 5.3: For the Intel platform with a thread count of 1, 4, 
and 8, this shows the OpenMP speedup of CMAQ 4.7.1 
in the hybrid parallel (versus U.S. EPA) version of the 
ROS3-HC solver for the Absoft (abs3, abs4), Intel (ifc) 
and Portland (pgf) compilers. 
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Fig 5.4: For the AMD platform with a thread count of 1, 
4, 8, 12 and 16, this shows the OpenMP speedup of  
CMAQ 4.7.1 in the hybrid parallel (versus U.S. EPA) 
version of the ROS3-HC solver for the Absoft (abs3), 
Intel (ifc) and Portland (pgf) compilers. 
 
5.3 CMAQ 4.7.1 OpenMP scaling 
 

For the hybrid MPI+OpenMP modified CMAQ 
version with the Rosenbrock solver, Table 5.3 
shows the scaling metric corresponding to the 
runtimes in Table 5.1. 
 
Table 5.3. OpenMP scaling in the hybrid MPI+OpenMP 
ROS3-HC version of the CMAQ 4.7.1 ROS3-HC solver 
on the HiPERiSM Intel and AMD platforms for the 
Absoft (abs3, abs4), Intel (ifc) and Portland (pgf) 
compilers. 

ROS3-HC 
Scaling by thread count 

Compiler 
group 

P
latform

 1 4 8 12 16 

abs3 1.00 1.66 1.87   
abs4 1.00 1.70 1.92   

ifc 1.00 1.38 1.53   
pgf 

Intel 

1.00 1.34 1.42   
abs3 1.00 1.57 1.76 1.81 1.91 

ifc 1.00 1.39 1.55 1.57 1.62 

pgf 

A
M

D
 

1.00 1.37 1.42   

 
Figs 5.5 and 5.6 respectively, show OpenMP 

scaling results of Table 5.3 on the Intel and AMD 
platforms for 1 to 16 cores. Note the doubling of 
the abscissa scale in Fig. 5.6 for the AMD case. 
All three compilers show healthy increases in 
OpenMP scaling with increasing thread count. 
Here the higher scaling values for the Absoft case 
is a reflection of the longer runtime for a single 
thread. 
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Fig 5.5: For the Intel platform with a thread count of 1, 4, 
and 8, this shows the OpenMP scaling for CMAQ 4.7.1 
in the hybrid parallel version of the ROS3-HC solver for 
the Absoft (abs3 , abs4), Intel (ifc) and Portland (pgf) 
compilers. 
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Fig 5.6: For the AMD platform with a thread count of 1, 
4, 8, 12 and 16, this shows the OpenMP scaling for 
CMAQ 4.7.1 in the hybrid parallel version of the ROS3-
HC solver for the Absoft (abs3), Intel (ifc) and Portland 
(pgf) compilers. 
 
5.4 Saturation in OpenMP scaling 
 

The results of the previous discussion 
demonstrate saturation in scaling as the thread 
count increases, as is particularly evident in Fig. 
5.6. The origin of this is explained here using an 
adaptation of the argument given by R.W. 
Hockney [Hockney]. If runtime is T1 for a single 
thread and TP for p threads, then TP has two time 
components. One from the Rosenbrock solver, 
TROS, and the other from serial work outside it, 
TSER. Then TP = TSER + TROS / p, because p 
threads each concurrently performs 1/p of the 
work in the solver. Thread scaling, as used here, 
is the ratio SP = T1/TP = T1/(TSER + TROS / p). In the 
asymptotic limit, p , scaling saturates at a 
maximum value of S = T1/TSER. From profiling 
results [Delic, 2009], one estimate of the ratio 
TSER:TROS is 60:40, and then the saturation value is 
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S  ~ 1.67. Some differences between compilers 
and platforms is to be expected because they 
perform differently in scheduling resources in 
serial and parallel code regions. This result is the 
so-called Amdahl saturation effect and is due to 
the presence of serial code outside the 
Rosenbrock solver that is executed with a single 
thread. The effect is evident in Table 5.3 and Figs. 
5.5, 5.6, where the rate of scaling declines with 
thread counts above 4 at which point some 80% 
(or more) of the saturation value is reached. It is 
likewise reflected in the speedup comparison of 
Section 5.2, where the runtimes of two different 
algorithms are compared for the same problem 
size. As a footnote to this discussion, in an MPI 
implementation, the serial code part of CMAQ is 
substantially replicated for each MPI process and 
this results in redundant work that decreases MPI 
efficiency (as discussed in Section 4.3). 
 
6. LESSONS LEARNED ABOUT CMAQ 
PERFORMANCE 
 
6.1 Limits to CMAQ performance with MPI 
 

CMAQ 4.7.1, with the Rosenbrock solver 
shows a decline in MPI parallel efficiency as the 
number of MPI processes increases. This results 
in an increase in processor idle time. The trend 
found here suggests that, in the U.S. EPA release, 
efficiency with hundreds of MPI processes would 
lead to average processor idle times of the order 
of 60%. Despite the reduction in runtime with 
increasing MPI process count, the focus in future 
research should be improved efficiency and 
enhanced CMAQ workload throughput. 
Confirmation of these observations is to be found 
in reports by others [Lee, 2010] that increasing the 
number of MPI processes beyond 100 does lead 
to an increase in CMAQ runtime. 
 
6.2 Compilers for the CMAQ model 

 
Differentiating compilers for CMAQ based on 

performance alone is now more difficult because 
the performance window has narrowed between 
the available choices as compiler vendors have 
evolved to embrace new architectures. 

This comparison of three vendor compilers 
shows that while each offers value for CMAQ 
performance there is little justification in limiting 
the standard distribution of CMAQ to only one or 
two choices. Specifically the results for the Absoft 
compiler suggest that is should be included in 
future distributions of CMAQ. 

An additional discovery at HiPERiSM 
Consulting, LLC, has been the consequences 
compiler optimization choices have for numerical 
precision. The highest level optimizations 
generally have a reduced accuracy for some 
CMAQ species concentrations. For this reason 
care needs to be exercised in the use of compilers 
to avoid erroneous model predictions. 
 
6.3 CMAQ in multi-thread mode 
 

This analysis compared runtime of CMAQ 
4.7.1 in the hybrid MPI and OpenMP parallel 
version with the U.S. EPA release. The 
observations indicated that the multi-threaded 
speedup: 

 Showed a range of 1.25 to 1.4 with 8 
parallel threads and values as high as 
1.48 for 16 threads. 

 Saturates with asymptotic thread count 
due to the remaining serial work outside of 
the Rosenbrock solver.  

 Does not depend on the choice of 
hardware since both AMD and Intel 
platforms showed similar trends. 

 Was Independent of compiler choice 
based on comparison of compilers from 
Absoft, Intel and the Portland Group. 

 
6.4 Comparing hardware platforms 
 
There is a large difference in runtime between 
AMD and Intel platforms for the same model 
simulation of an individual serial run. However, 
with more cores on the AMD platform there is 
more flexibility and greater workload throughput 
capability. This is explained in a cost benefit 
analysis of these two hardware options for CMAQ 
workloads in a recent report [Delic, 2011]. 
 
7. CONCLUSIONS 
 

This report has described an analysis of 
CMAQ 4.7.1 behavior in the standard U.S. EPA 
release (with MPI only) and a parallel hybrid 
(OpenMP and MPI) version of CMAQ for the 
Rosenbrock solver. Good speedup trends result 
from an increase in the number of parallel threads. 
This trend was observed with three compilers on 
two hardware platforms. However, limits were 
observed to performance opportunities with an 
MPI (only) implementation of the standard U.S. 
EPA release. The limitations were due to 
increasing average processor idle time during the 
course of a simulation as the MPI process count 
increased. 
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Compilers from Absoft, Intel and the Portland 
group all offered value for the CMAQ model and 
the current overall performance leader is the 
compiler from Absoft. 

 Further opportunities remain for thread 
parallelism in other parts of the CMAQ model 
outside of the solver and work in this direction 
continues at HiPERiSM Consulting, LLC. In view 
of the limitations with MPI evolution this effort is 
directed at performance with GPGPU technology 
[CUDA] where using thousands of threads for 
CMAQ simulations brings its own challenges. 
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