
Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

1

CMAQ PERFORMANCE WITH THREE COMPILERS ON TWO PLATFORMS

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

This presentation continues a decade-long

study of CMAQ behavior when compiled and
executed with vendor-supported compilers on
commodity hardware platforms. In the past CMAQ
has been ported to compilers from the Portland
Group® [PGI] and (more recently) the Intel
Corporation® [INTEL]. We propose that the time
has come to add other compilers to the CMAQ
fold: specifically new results are presented for
Absoft Fortran from the Absoft Corporation®
[ABSOFT]. A great deal has changed over ten
years in compiler development, and while
compilers from different vendors tend to leap-frog
each other in performance, all have undergone
ground-breaking evolution in following hardware
developments. These developments are not
reflected in the limited choice of compilers and the
options available in the standard releases from the
CMAS Center download site [CMAS].

This report presents results of comparing
standard U.S. EPA and the multithreaded version
of CMAQ developed by HiPERiSM Consulting,
LLC, for multi-core processors with three
compilers on two platforms (Delic, 2009, 2010).
The Rosenbrock (ROS3) chemistry solver version
of CMAQ 4.7.1 is chosen for this analysis because
it offers the best potential for parallel performance.

The ROS3-HC code is a hybrid parallel model
with three levels of parallelism. The (outer)
Message Passing Interface (MPI) level is the one
previously delivered in the standard U.S. EPA
distribution. The (inner) parallel layers developed
at HiPERiSM have added both thread-level
parallelism and instruction-level parallelism (at the
vector loop level). This report examines
parallelism in CMAQ at the MPI and the thread
levels.

2. CHOICE OF PLATFORMS

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in

* Corresponding author: George Delic,
george@hiperism.com.

Table 2.1. Each of the two platforms, Intel and
Advanced Micro Devices (AMD), have a total of 8
and 48 cores, respectively. This cluster is used for
either MPI only, or hybrid thread-parallel OpenMP
plus MPI execution, and results for both modes
are reported below.

Table 2.1. Platforms at HiPERiSM Consulting, LLC

Platform AMD Intel

Processor AMD�™ Opteron
6176SE

Intel�™ IA32
W5590

Peak Gflops (SP/DP) 110.4 / 55.2 106.6 / 53.3
Power consumption 105 Watts 130 Watts
Cores per processor 12 4

Power consumption per core 8.75 Watts 32.5 Watts
Processor count 4 2
Total core count 48 8

Clock 2.3GHz 3.33GHz
Band-width 42.7 GB/sec 64.0 GB/sec

Bus speed 1333 MHz 1333 MHz

L1 cache 64KB 64KB
L2 cache 512 KB(1) 256MB

L3 cache(2) 12MB 8MB
(1) Per core, (2) Per socket

2.2 Compilers

This report concurrently evaluates the latest
compiler versions from Intel (12.0), Portland (11.5)
and Absoft (11.1) for CMAQ 4.7.1 on 64-bit Linux
operating systems using top-of-the-line
performance hardware from Intel and AMD. The
U.S. EPA and ROS3-HC multi-threaded parallel
version were compiled and executed with all three
compilers on both platforms shown in Table 2.1.

For each compiler several groups of
optimization switches were test, but only a few are
selected for presentation here. These correspond
to two groups for Absoft (abs3 and abs4), and one
respectively for Intel (ifc) and Portland (pgf)
compilers. For each compiler group this analysis
included new builds of CMAQ support libraries
such as NetCDF, IOAPI, MPICH, STENEX and
PARIO. In each case compiler options have been
chosen after extensive research into three areas
of fundamental significance for CMAQ: the
memory model, numerical precision, and time to
completion. This study found that although the
highest optimization levels produce the shorter
runtimes, in some cases they also introduce
numerical differences that compromise numerical
precision for a small (10%) subset of the species
concentration value population. This observation

Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

2

leads to a choice of more conservative compiler
option groups. Details of compiler options are
available from the author.

3. EPISODE STUDIED

For all CMAQ 4.7.1 results reported here the
model episode selected was for August 09, 2006,
using data provided by the U.S. EPA. This episode
has the CB05 mechanism with Chlorine
extensions and the Aero 4 version for PM
modeling. The episode was run for a full 24 hour
scenario on a 279 X 240 Eastern US domain at 12
Km grid spacing and 34 vertical layers.

4. RESULTS FOR U.S. EPA’s CMAQ 4.7.1

4.1 Serial runtime results

Fig 4.1 shows the serial (one MPI process)
runtime results for U.S. EPA�’s CMAQ 4.7.1
release with the three compilers introduced in
Section 2.2. The numerical values are shown in
Table 5.1. The values for the AMD platform shown
in Fig 4.1 have been reduced by a half to better fit
the figure scale. The AMD Absoft compiler group
abs4 is not yet completed.

On the Intel platform, the Intel compiler
delivers, the shortest runtime (25.1 hours) followed
closely by the Absoft compiler (25.9 hours) with
group abs4. On the AMD platform Absoft (52.3
hours) outperforms both Intel and Portland
compilers even with the lower optimization choice
(abs3). The difference between Intel and AMD
platforms (e.g. 27.1 versus 52.3 hours for group
abs3) is mainly due to the differences in clock
speed, bandwidth, and cache size (Table 2.1).

21

22

23

24

25

26

27

28

Intel AMD
Platform

ho
ur

s

abs3
abs4
ifc
pgf

<-- Scaled by 0.5 -->

Fig 4.1: Serial runtime (in hours) for CMAQ 4.7.1 in the
U.S. EPA release of the ROS3 solver for the Intel and
AMD platforms. The AMD results have been reduced by
a factor of 2 to better fit the scale of the figure.

4.2 MPI Performance

The remaining results discussed in this section
are for the Portland compiler on Intel and AMD
platforms. MPI results for Intel and Absoft
compilers are in progress and will be reported at a
later date. For fastest MPI runtimes all tests are
performed locally (i.e. on-node) to avoid any
interconnect latency issues, using 8 to 48 MPI
processes. The Intel platform is limited to 8 cores
whereas the AMD platform has up to 48 cores.

Typical runtime results for the standard U.S.
EPA distribution of CMAQ 4.7.1 are shown in
Table 4.1 for Intel and AMD platforms with the
Portland�™ compiler.

Table 4.1. Wall clock times (in hours), MPI parallel
speedup, and MPI efficiency, for the CMAQ Rosenbrock
solver. This is for the U.S. EPA�’s standard release of
CMAQ 4.7.1 on HiPERiSM�’s Intel and AMD platforms
for the Portland compiler group pgf.

Time in
hours (EPA)

MPI speedup
versus NP=1

MPI parallel
efficiency

Col x Row
= NP

Intel AMD Intel AMD Intel AMD
1 x 1 = 1 27.4 54.4 1.00 1.00 1.00 1.00
1 x 2 = 2 15.6 29.2 1.76 1.86 0.88 0.93
2 x 2 = 4 8.5 15.7 3.22 3.47 0.81 0.87
2 x 4 = 8 5.1 8.5 5.39 6.41 0.67 0.80

4 x 4 = 16 4.41 12.3 0.77
4 x 8 = 32 2.49 21.9 0.68

Results on both platforms show that CMAQ gains
from the evolution of commodity computer
architectures. It is interesting to note that the AMD
platform with 8 cores equals the performance of
the Intel platform with 4 cores and exceeds it with
8 (Intel) versus 16 (AMD) cores.

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Number of MPI processs

M
PI

 p
ar

al
le

l s
pe

ed
up

MPI speedup
Linear Speedup

Fig 4.2: MPI parallel speedup with the Portland compiler
for CMAQ4.7.1 in the U.S. EPA release of the ROS3
solver for the AMD platform.

Using the results of Table 4.1, Fig. 4.2 shows
the MPI parallel speedup. This displays an

Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

3

increasing divergence from linearity with
increasing number of MPI processes and is best
analyzed by inspecting MPI parallel efficiency.

4.3 MPI Efficiency

This section presents MPI parallel efficiency
results for the Rosenbrock (ROS3) chemistry
solver in the U.S. EPA version of CMAQ 4.7.1.
The MPI parallel efficiency shown in Table 4.1 is
the MPI speedup divided by the number of MPI
processes. Fig. 4.3 summarizes CMAQ 4.7.1 MPI
parallel efficiency (and inefficiency) with increasing
process count. From the logarithmic scale on the
abscissa it is clear that the ROS3 solver shows an
exponential decline in MPI parallel efficiency when
NP>1. Using the extrapolation shown in Fig. 4.3
the asymptote of parallel efficiency is of the order
of 60% for 64 MPI processes where CPUs are idle
for 40% of the wall clock time (on average).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100
Log of the number of MPI processes

efficiency
1 - efficiency
 extrapolation

Fig 4.3: MPI parallel efficiency (and inefficiency) for
CMAQ4.7.1 in the U.S. EPA release of the ROS3 solver
for the AMD platform. Note the logarithmic scale on
the abscissa.

Efficiency and inefficiency may be translated
to the average utilization and idle times and these
are shown in Fig. 4.4 as a percentage of the total
runtime at each MPI process count. While
decrease in runtime for CMAQ 4.7.1 is dramatic
with increasing MPI process count, the
corresponding increase in idle time is relentless.
The trend line in Fig. 4.3 suggests a decline to
40% MPI parallel efficiency in the next decade of
the abscissa�’s logarithmic scale (100-1000). Using
80% as an acceptable efficiency threshold, Table
4.1 suggests a maximum allowable MPI process
count on each platform of 4 (Intel) and 8-16
(AMD), respectively.

0
10
20
30
40
50
60
70
80
90

100

1 10 100
Log of the number of MPI processes

idle time (%)
utilization time (%)
runtime (hours)
 utilization trend
 runtime trend

Fig 4.4: MPI parallel runtime, percent utilization and idle
time, for CMAQ4.7.1 in the U.S. EPA release of the
ROS3 solver for the AMD platform. Two trend lines are
included. The ordinate represents both hours for runtime
and percent for utilization and idle time fractions. Note
the logarithmic scale on the abscissa.

5. HYBRID OpenMP+MPI RESULTS

5.1 CMAQ runtime

Results for runtime in the hybrid
MPI+OpenMP version of CMAQ 4.71.1 with three
compilers, are presented here for the parameter
choices BLKSIZE=1536 and NCMAX=48. For a
discussion of these parameters see the previous
reports in this series (Delic, 2009,2010). Table 5.1
summarizes the CMAQ 4.7.1 results for runtime
(in hours) for the case of one MPI process.

Table 5.1. Wall clock times (in hours) for the U.S. EPA
(ROS3-EPA) and hybrid MPI+OpenMP (ROS3-HC)
versions of CMAQ 4.7. The platforms are Intel and AMD
for the Absoft (abs3, abs4), Intel (ifc) and Portland (pgf)
compilers.

ROS3-HC
Time in hours by thread count

Compiler
group

P
latform

ROS3-
EPA

1 4 8 12 16

abs3 27.1 36.1 21.8 19.3
abs4 25.9 35.8 21.1 18.7

ifc 25.1 29.4 21.3 19.2
pgf

Intel

27.4 31.1 23.3 21.9
abs3 52.3 67.5 43.1 38.3 37.2 35.4

ifc 53.7 63.2 45.5 40.7 40.2 39.0

pgf

A
M

D

54.4 60.9 44.4 43.0

In this table execution times of the standard

U.S. EPA release are in the column labeled
ROS3-EPA. Columns under the label ROS3-HC
show results of the hybrid MPI+OpenMP CMAQ
4.7.1 version with the Rosenbrock solver. The
rows correspond to the different compiler choices

Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

4

for an MPI process count of 1 and the thread
count is the number appearing under the column
labeled as ROS3-HC. The blank cells indicate that
results are not yet available at this time, or are
limited by 8 cores per node on the Intel platform.

For the CMAQ hybrid parallel version ROS3-
HC Figs 5.1 and 5.2 respectively show the Intel
and AMD platform results of Table 5.1 for 1, 4, and
8 cores. The best times with 8 threads are those
for the Absoft compiler, and, although gains are
less when more threads are added, this lead
increases.

18

20

22

24

26

28

30

32

34

36

38

1 4 8

Number of OpenMP threads

H
ou

rs

abs3
abs4
ifc
pgf

Fig 5.1: For the Intel platform with a thread count of 1, 4,
and 8, this shows the OpenMP parallel runtime (in
hours) for CMAQ 4.7.1 in the hybrid parallel version of
the ROS3-HC solver for the Absoft (abs3, abs4), Intel
(ifc) and Portland (pgf) compilers.

36

41

46

51

56

61

66

71

76

1 4 8

Number of OpenMP threads

H
ou

rs

abs3
ifc
pgf

Fig 5.2: For the AMD platform with a thread count of 1,
4, and 8, this shows the OpenMP parallel runtime (in
hours) for CMAQ 4.7.1 in the hybrid parallel version of
the ROS3-HC solver for the Absoft (abs3), Intel (ifc) and
Portland (pgf) compilers.

5.2 CMAQ OpenMP speedup vs U.S. EPA

In this section, and the next, two performance
metrics are introduced to assess thread parallel
performance in the ROS3-HC modified code:

(a) Speedup is the gain in runtime over the
standard U.S. EPA runtime,

(b) Scaling is the gain in runtime for thread
counts larger than 1, relative to the result
for a single thread.

For the hybrid MPI+OpenMP modified CMAQ

version with the Rosenbrock solver, Table 5.2
shows the speedup metric corresponding to the
runtimes in Table 5.1. Figs 5.3 and 5.4,
respectively, show the speedup results of Table
5.2 on the Intel and AMD platform for 1 to 16
cores. Note the doubling of the abscissa scale in
Fig. 5.4 for the AMD case. This shows clearly the
growing Absoft advantage with increasing thread
count on both Intel and AMD platforms.

Table 5.2. OpenMP speedup of the hybrid
MPI+OpenMP (ROS3-HC) version over the U.S. EPA
release of CMAQ 4.7.1. The platforms are Intel and
AMD for the Absoft (abs3, abs4), Intel (ifc) and Portland
(pgf) compilers.

ROS3-HC
Speedup by thread count

Compiler
group

P
latform

 1 4 8 12 16

abs3 0.75 1.24 1.40
abs4 0.72 1.23 1.39

ifc 0.85 1.18 1.31
pgf

Intel

0.88 1.18 1.25
abs3 0.77 1.21 1.37 1.40 1.48

ifc 0.85 1.18 1.32 1.33 1.38

pgf

A
M

D

0.89 1.23 1.27

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 4 8
Number of OpenMP threads

abs3
abs4
ifc
pgf

Fig 5.3: For the Intel platform with a thread count of 1, 4,
and 8, this shows the OpenMP speedup of CMAQ 4.7.1
in the hybrid parallel (versus U.S. EPA) version of the
ROS3-HC solver for the Absoft (abs3, abs4), Intel (ifc)
and Portland (pgf) compilers.

Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

5

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1 4 8 12 16
Number of OpenMP threads

abs3
ifc
pgf

Fig 5.4: For the AMD platform with a thread count of 1,
4, 8, 12 and 16, this shows the OpenMP speedup of
CMAQ 4.7.1 in the hybrid parallel (versus U.S. EPA)
version of the ROS3-HC solver for the Absoft (abs3),
Intel (ifc) and Portland (pgf) compilers.

5.3 CMAQ 4.7.1 OpenMP scaling

For the hybrid MPI+OpenMP modified CMAQ
version with the Rosenbrock solver, Table 5.3
shows the scaling metric corresponding to the
runtimes in Table 5.1.

Table 5.3. OpenMP scaling in the hybrid MPI+OpenMP
ROS3-HC version of the CMAQ 4.7.1 ROS3-HC solver
on the HiPERiSM Intel and AMD platforms for the
Absoft (abs3, abs4), Intel (ifc) and Portland (pgf)
compilers.

ROS3-HC
Scaling by thread count

Compiler
group

P
latform

 1 4 8 12 16

abs3 1.00 1.66 1.87
abs4 1.00 1.70 1.92

ifc 1.00 1.38 1.53
pgf

Intel

1.00 1.34 1.42
abs3 1.00 1.57 1.76 1.81 1.91

ifc 1.00 1.39 1.55 1.57 1.62

pgf

A
M

D

1.00 1.37 1.42

Figs 5.5 and 5.6 respectively, show OpenMP

scaling results of Table 5.3 on the Intel and AMD
platforms for 1 to 16 cores. Note the doubling of
the abscissa scale in Fig. 5.6 for the AMD case.
All three compilers show healthy increases in
OpenMP scaling with increasing thread count.
Here the higher scaling values for the Absoft case
is a reflection of the longer runtime for a single
thread.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1 4 8
Number of OpenMP threads

abs3
abs4
ifc
pgf

Fig 5.5: For the Intel platform with a thread count of 1, 4,
and 8, this shows the OpenMP scaling for CMAQ 4.7.1
in the hybrid parallel version of the ROS3-HC solver for
the Absoft (abs3 , abs4), Intel (ifc) and Portland (pgf)
compilers.

0.00

0.50

1.00

1.50

2.00

2.50

1 4 8 12 16

abs3
ifc
pgf

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

1 4 8 12 16
Number of OpenMP threads

abs3
ifc
pgf

Fig 5.6: For the AMD platform with a thread count of 1,
4, 8, 12 and 16, this shows the OpenMP scaling for
CMAQ 4.7.1 in the hybrid parallel version of the ROS3-
HC solver for the Absoft (abs3), Intel (ifc) and Portland
(pgf) compilers.

5.4 Saturation in OpenMP scaling

The results of the previous discussion
demonstrate saturation in scaling as the thread
count increases, as is particularly evident in Fig.
5.6. The origin of this is explained here using an
adaptation of the argument given by R.W.
Hockney [Hockney]. If runtime is T1 for a single
thread and TP for p threads, then TP has two time
components. One from the Rosenbrock solver,
TROS, and the other from serial work outside it,
TSER. Then TP = TSER + TROS / p, because p
threads each concurrently performs 1/p of the
work in the solver. Thread scaling, as used here,
is the ratio SP = T1/TP = T1/(TSER + TROS / p). In the
asymptotic limit, p , scaling saturates at a
maximum value of S = T1/TSER. From profiling
results [Delic, 2009], one estimate of the ratio
TSER:TROS is 60:40, and then the saturation value is

Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

6

S ~ 1.67. Some differences between compilers
and platforms is to be expected because they
perform differently in scheduling resources in
serial and parallel code regions. This result is the
so-called Amdahl saturation effect and is due to
the presence of serial code outside the
Rosenbrock solver that is executed with a single
thread. The effect is evident in Table 5.3 and Figs.
5.5, 5.6, where the rate of scaling declines with
thread counts above 4 at which point some 80%
(or more) of the saturation value is reached. It is
likewise reflected in the speedup comparison of
Section 5.2, where the runtimes of two different
algorithms are compared for the same problem
size. As a footnote to this discussion, in an MPI
implementation, the serial code part of CMAQ is
substantially replicated for each MPI process and
this results in redundant work that decreases MPI
efficiency (as discussed in Section 4.3).

6. LESSONS LEARNED ABOUT CMAQ
PERFORMANCE

6.1 Limits to CMAQ performance with MPI

CMAQ 4.7.1, with the Rosenbrock solver
shows a decline in MPI parallel efficiency as the
number of MPI processes increases. This results
in an increase in processor idle time. The trend
found here suggests that, in the U.S. EPA release,
efficiency with hundreds of MPI processes would
lead to average processor idle times of the order
of 60%. Despite the reduction in runtime with
increasing MPI process count, the focus in future
research should be improved efficiency and
enhanced CMAQ workload throughput.
Confirmation of these observations is to be found
in reports by others [Lee, 2010] that increasing the
number of MPI processes beyond 100 does lead
to an increase in CMAQ runtime.

6.2 Compilers for the CMAQ model

Differentiating compilers for CMAQ based on

performance alone is now more difficult because
the performance window has narrowed between
the available choices as compiler vendors have
evolved to embrace new architectures.

This comparison of three vendor compilers
shows that while each offers value for CMAQ
performance there is little justification in limiting
the standard distribution of CMAQ to only one or
two choices. Specifically the results for the Absoft
compiler suggest that is should be included in
future distributions of CMAQ.

An additional discovery at HiPERiSM
Consulting, LLC, has been the consequences
compiler optimization choices have for numerical
precision. The highest level optimizations
generally have a reduced accuracy for some
CMAQ species concentrations. For this reason
care needs to be exercised in the use of compilers
to avoid erroneous model predictions.

6.3 CMAQ in multi-thread mode

This analysis compared runtime of CMAQ
4.7.1 in the hybrid MPI and OpenMP parallel
version with the U.S. EPA release. The
observations indicated that the multi-threaded
speedup:

 Showed a range of 1.25 to 1.4 with 8
parallel threads and values as high as
1.48 for 16 threads.

 Saturates with asymptotic thread count
due to the remaining serial work outside of
the Rosenbrock solver.

 Does not depend on the choice of
hardware since both AMD and Intel
platforms showed similar trends.

 Was Independent of compiler choice
based on comparison of compilers from
Absoft, Intel and the Portland Group.

6.4 Comparing hardware platforms

There is a large difference in runtime between
AMD and Intel platforms for the same model
simulation of an individual serial run. However,
with more cores on the AMD platform there is
more flexibility and greater workload throughput
capability. This is explained in a cost benefit
analysis of these two hardware options for CMAQ
workloads in a recent report [Delic, 2011].

7. CONCLUSIONS

This report has described an analysis of
CMAQ 4.7.1 behavior in the standard U.S. EPA
release (with MPI only) and a parallel hybrid
(OpenMP and MPI) version of CMAQ for the
Rosenbrock solver. Good speedup trends result
from an increase in the number of parallel threads.
This trend was observed with three compilers on
two hardware platforms. However, limits were
observed to performance opportunities with an
MPI (only) implementation of the standard U.S.
EPA release. The limitations were due to
increasing average processor idle time during the
course of a simulation as the MPI process count
increased.

Presented at the 10th Annual CMAS Conference, Chapel Hill, NC, October 24-26 2011

7

Compilers from Absoft, Intel and the Portland
group all offered value for the CMAQ model and
the current overall performance leader is the
compiler from Absoft.

 Further opportunities remain for thread
parallelism in other parts of the CMAQ model
outside of the solver and work in this direction
continues at HiPERiSM Consulting, LLC. In view
of the limitations with MPI evolution this effort is
directed at performance with GPGPU technology
[CUDA] where using thousands of threads for
CMAQ simulations brings its own challenges.

REFERENCES

ABSOFT: The Absoft Corporation
http://www.absoft.com

CMAS: http://www.cmascenter.org/

CUDA:
http://www.nvidia.com/object/cuda_home_new.html

Delic, 2003-2010: see presentations at the Annual
CMAS meetings (http://www.cmasecenter.org).

Delic, 2011: Technical Report HCTR-2011-4 at
http://www.hiperism.com

Hockney, R.W., The Science of Computer
Benchmarking, SIAM, Philadelphia, 1996.

INTEL: Intel Corporation, http://www.intel.com

Lee, Pius, et al., 2010, 9th Annual CMAS Conference,
Chapel Hill, NC, October 11-13, 2010.

PGI: The Portland Group http://www.pgroup.com

http://www.absoft.com/
http://www.cmascenter.org/
http://www.nvidia.com/object/cuda_home_new.html
http://www.cmasecenter.org/
http://www.hiperism.com/HCTR2011_4.html
http://www.hiperism.com/
http://www.intel.com/
http://www.pgroup.com/

