

INTRODUCTION

Smoke from biomass burning events contributes to air quality problems such as particulate matter, ozone, and air toxics. Experimental real-time smoke predictions, facilitated by the U.S. Forest Service (USFS) BlueSky Framework, are available across the lower 48 states via the BlueSky Gateway Modeling System. Graphical products are distributed through the BlueSky Gateway web portal. The BlueSky Gateway provides access to a variety of BlueSky-related information, data, and products. The web portal also features access to

SMARTFIRE data through web services technology and an interactive GIS-based fire location viewer, where the user can view current and historical fire locations and burn footprints, and generate and view HYSPLIT trajectories.

PRODUCTS AND TOOLS AVAILABLE VIA THE BLUESKY GATEWAY WEB PORTAL

Real-time graphical products from the BlueSky Gateway Modeling System include:

- Surface PM_{2.5} (total, fire-only, and non-fire)
- Surface ozone due to all emission sources
- Visual range, derived by combining CMAQ's non-fire PM_{2.5} extinction with extinction estimated from fire $PM_{2.5}$ concentrations
- Surface wind speed, surface wind direction, PBL depth, and ventilation index.

KML files for all model products will be available soon for visualization with Google Earth.

Graphical Products

CMAQ DAILY AVERAGE TOTAL PM2.5

June 23,2008 0:00:00 Min= 0.0 at (16,112), Max=307.6 at (16,69)

Next-day forecast of total $PM_{2.5}$ concentrations for 23 June, 2008 produced by the BlueSky Gateway Modeling System.

SMARTFIRE Data Viewer

The interactive SMARTFIRE viewer provides graphical access to real-time and historical fire location information. with the ability to overlay trajectories from the NOAA HYSPLIT model. SMARTFIRE data are also available via FTP and web services technology.

Sample graphic generated from the BlueSky Gateway SMARTFIRE viewer for June, 22 2008. Fire events (grey shading) represent cumulative area burned as of September 22, 2008. Black lines are 24-hour HYSPLIT forward trajectories originating from various fire locations.

BlueSky Gateway: Providing Access to Products from the BlueSky Smoke Modeling Program

Kenneth J. Craig¹, Neil J. M. Wheeler¹, Sean M. Raffuse¹, Dana C. Sullivan¹, Stephen B. Reid¹, Robert Solomon², Tara Strand², Sim Larkin² ¹ Sonoma Technology, Inc., Petaluma, California ²U.S. Forest Service Pacific Northwest Research Station, Seattle, Washington

Outputs from SMARTFIRE and the BlueSky Gateway Modeling System are available for FTP download. SMARTFIRE web services are also available.

BlueSky Gateway Beta	Smoke Fire Downloads File BlueSky Framework SMARTFIRE Data Produc	ramework FAQ ots	Blue Gat
Downloads The following inform obtainable via FTP	nation and data products are in standard and Web Services (login required):	data formats	Dat csv Fire
Bluesky The Blue This binary distribution	eSky Framework	Colo	Fire Fire Hour Hour
comes "out of the box" emissions, and meter CALPUFF, and is com	' ready to use with many third-party air quality, prological models, such as CONSUME, FEPS, and apatible with SMOKE.	Access	SMO
Daily exports of data fr format can be downlo	FIRE Data rom the <u>SMARTFIRE</u> fire activity system in CSV aded here. For an alternate source of the same	Gain	Point Point Point
		Access	CMA(Day Day
Daily predictions for N CMAQ air quality mode meteorological model Configuration of the Bl	orth America (derived from SMARTFIRE data, the el at a 36-km grid, and other emissions and is as they are processed in the BlueSky Gateway lueSky Framework).	Gain Access	Day Day Day
Access is grante and control use account, please	ed routinely on request. Password protection is used of resources on experimental computing systems. T email <u>BlueSkyGateway@sonomatech.com</u> .	l to monitor fo request an	Day Day Day

Access to Smoke Forecast Products

The BlueSky Gateway Web Portal provides access to other publicly available smoke prediction products.

The Fire Consortia for the Advanced Modeling of Meteorology and Smoke (FCAMMS) apply the BlueSky Framework to facilitate regional higherresolution smoke predictions using HYSPLIT, CALPUFF, or CMAQ.

The National Weather Service produces operational forecasts of smoke impacts using the HYSPLIT dispersion model and an earlier version of the BlueSky emissions module.

COMPONENTS OF THE REAL-TIME BLUESKY GATEWAY MODELING SYSTEM

BlueSky Framework

SMOKE

- Sparse Matrix Operator Kernel
- Emissions Modeling System v2.3. Merges fire emissions from the
- BlueSky Framework with non-fire emissions.
- Non-fire emissions derived from the 2002 NEI version 3 projected to the current year using EGAS version 4.0.
- produced using FCCS fuel loading, | MM5 temperature predictions are used in on-road (MOBILE6) and biogenic (BEIS v3.09) emissions.
- Pennsylvani NCAR Meso Version 3.7.
- National dor horizontal gr vertical layer Initial and bo
- from NAM 4 MCIP version
- MM5 data fo MM5 vertica CMAQ vertic

Data Downloads

cerrery bern			- 33	~						
a Products										
Emissions Data										
	Sep 22	Sep 21	Sep 20	Sep 19	Sep 18	Sep 17	Sep 16	Sep 15	Sep 14	Sep 13
Events (00Z)	.csv	.CSV	CSV	.CSV	.csv	.CSV	.csv	.CSV	.csv	.CSV
Events (18Z)	.CSV	.CSV	CSV	.CSV	.CSV	.csv	.CSV	.CSV	.CSV	.CSV
Locations (OOZ)	.CSV	.csv	.CSV	.CSV	.CSV	.CSV	.CSV	.CSV	.CSV	.csv
Locations (18Z)	.CSV	.CSV	.CSV	.CSV	.CSV	.csv	.CSV	.CSV	.CSV	. <u>.csv</u>
rly Emissions (00Z)	CSV	.CSV	CSV	.CSV	.csv	.CSV	<u>.csv</u>	.CSV	CSV	.CSV
rly Emissions (18Z)	.CSV	.CSV	.CSV	.CSV	.CSV	.CSV	.CSV	. <u>CSV</u>	.csv	.csv
KE-ready Emissions	Data									
,, j	Sep 22	Sep 21	Sep 20	Sep 19	Sep 18	Sep 17	Sep 16	Sep 15	Sep 14	Sep 13
t Inventory (OOZ)	.ida	ida	.ida	ida	.ida	.ida	.ida	ida	.ida	ida
t Inventory (18Z)	ida	ida	ida	ida	.ida	ida	ida	ida	.ida	ida
t Hourly (OOZ)	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95
t Hourly (18Z)	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95	.ems95
Q Dispersion Data (H	ourly) — N	etCDF F	ormat							
	Sep 22	Sep 21	Sep 20	Sep 19	Sep 18	Sep 17	Sep 16	Sep 15	Sep 14	Sep 13
1 Hourly Data (00Z)	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>
1 Hourly Data (18Z)	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	.nc	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>
2 Hourly Data (00Z)	<u>.nc</u>	<u>inc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>inc</u>	<u>.nc</u>	<u>sinc</u>	<u>.nc</u>	i <u>nc</u>
2 Hourly Data (18Z)	.nc	<u>.nc</u>	.nc	<u>.nc</u>	.nc	<u>.nc</u>	.nc	<u>.nc</u>	.nc	<u>.nc</u>
3 Hourly Data (007)	<u>.nc</u>	. <u>nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	. <u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>
e meanil e ana (eest)										
		CDE E	rmat							
Q Dispersion Data (D	aily) — Ne	ICDF FO			-		Son 16	Can 15	C 11	Sen 13
Q Dispersion Data (D	aily) — Ne Sep 22	Sep 21	Sep 20	Sep 19	Sep 18	Sep 17	Seb 10	Sep 15	Sep 14	000 10
Q Dispersion Data (D 1 Totals (00Z)	aily) — Ne Sep 22 .nc	Sep 21	Sep 20	Sep 19 .nc	Sep 18 .nc	Sep 17 .nc	<u>.nc</u>	.nc	<u>.nc</u>	<u>.nc</u>
Q Dispersion Data (D 1 Totals (DOZ) 1 Totals (18Z)	aily) — Ne Sep 22 .nc .nc	Sep 21 .nc	Sep 20 .nc	Sep 19 .nc .nc	Sep 18 .nc .nc	Sep 17 .nc .nc	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>	<u>.nc</u>

The "early bird" 18z run cycle relies on preliminary SMARTFIRE data to provide timely two-day forecasts, while the main 00z run cycle relies on SMARTFIRE data supplemented with ground reports to provide threeday forecasts. Current and carryover PM_{2.5} are tracked separately to facilitate use within regional fire modeling systems.

Public Access:

Controlled Access:

- SMARTFIRE viewer
- BlueSky Framework distribution

Access to controlled data is routinely granted upon request. Password protection is used to monitor and control the use of resources on experimental computing systems. To request an account, please email BlueSkyGateway@sonomatech.com.

Acknowledgements: This work was supported by NASA Decision Support, USFS, and the Joint Fire Science Program.

Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008 (STI-3452) For more information, contact Neil Wheeler via email at neil@sonomatech.com.

MM5	CMAQ		
a State University/	The Community Multiscale Air		
oscale Model (MM5)	Quality (CMAQ) model version		
	4.5.1 is used to predict the fate of		
main with 36-km	airborne chemical species.		
rid spacing and 29	 Full gas-phase chemistry (CB-IV) 		
rs.	and secondary aerosol formation		
oundary conditions	(AERO3).		
0-km forecasts.	 Simulations are initialized with 		
on 3.1 used to prepare	carryover smoke from the previous		
or CMAQ, and to map	day's prediction.		
al layers onto a 17-layer	 Several fire types are tracked for 		
cal grid.	future use.		

REAL-TIME SYSTEM WORKFLOW

ACCESS TO THE BLUESKY GATEWAY

http://www.getbluesky.org

• Graphical products from the experimental BlueSky Gateway Modeling System • Links to experimental graphical products from regional FCAMMS • Links to operational smoke predictions form the NOAA Air Quality Forecast Model

netCDF and CSV data from the experimental BlueSky Gateway Modeling System

• SMARTFIRE data (FTP and web services)