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1. INTRODUCTION 
 
CMAQ performance and workload throughput 

have always been issues of concern for Air Quality 
modelers. These concerns have only grown with 
the migration to commodity processors in the past 
decade because of compromises in architecture 
design that have impaired performance and 
workload throughput. With the new generation of 
multi-core processors a decline in efficiency is to 
be expected without some remedial action to 
mollify the performance bottle-necks that CMAQ 
encounters at runtime. The present study was 
undertaken to identify where, and to what extent, 
performance is inhibited. Since CMAQ is a data-
intensive application the search for memory path 
"hot-spots" could be expected to provide clues 
because of the expense of memory access on 
commodity platforms. The following sections 
present the details of this study which focused 
only on CMAQ with the EBI chemistry solver. 
Work is in progress on improving the Rosenbrock 
and Gear solvers (Delic, 2008). The ultimate goal 
of this work is to significantly reduce the wall-clock 
time of large-scale CMAQ model simulations in 
future releases. 

 
2. CHOICE OF HARDWARE AND 
OPERATING SYSTEM 

 
The hardware systems chosen were 

HiPERiSM Consulting, LLC’s 8 CPU SGI Altix® 
with the Itanium2® (ia64) and Intel® Pentium 4 
Xeon, 64EMT (x86_64) processors. Clock rate 
and cache capacity differed with ia64 having 
1.5GHz, and data cache sizes of 256KB (L2), 4MB 
(L3), and x86_64 having 3.4GHz, and data cache 
size 1MB (L2). CMAQ was executed in serial 
mode on both platforms and with MPI mode on the 
ia64 cluster. Both platforms used the SUSE 10 
Linux release with proprietary modifications and 
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interfaces to the Performance Application 
Programming Interface performance event library 
(PAPI, 2005) to collect hardware performance 
counter values as the code executes (Delic, 2003-
2006). Results for selected performance metrics 
are presented to demonstrate how CMAQ code is 
mapped to architectural resources by compilers. 

Two compilers were used: Intel (ia64 and 
x86_64 platforms) and Portland Group (x86_64 
platform). In both cases high level (vector and 
inter-procedural) optimizations were applied and 
are designated by mnemonics ipo (Intel) or ipa 
(Portland) for switch groups shown in Table 2.1. 
 
Table 2.1. Compiler switches. 

Platform  Compiler 
(version) 

Switch 
group 

Switches  

x86_64 Portland(1) 
(7.0) ipa 

-fastsse –Mscalarsse 
-Mipa=fast -tp p7-64 

x86_64 Intel(2) 
(6.0) ipo 

-tpp7 -xW -O3 -Ob2 
-ipo 

ia64 Intel(2) 
(10.1) ipo 

-O3 -Ob2 -ipo 

1) Portland additional compiler switches include: -Mfixed –
Mextend –mcmodel=medium and link flag –
mcmodel=medium.  

2) Intel additional compiler switches include: -fixed –
extend_source 132 –fno-alias and link flags –static 
(without ipo), or –ipo –static (with ipo). 

 
3. EPISODES STUDIED 

 
The model episodes selected for this analysis 

were for January 10 and August 14, 2006 
(hereafter Winter and Summer, respectively). Both 
used the CB05 mechanism with Chlorine 
extensions and the Aero 4 version for PM 
modeling. The EBI solver was used for the gas 
chemistry. Both episodes were run for a full 24 
hour scenario on a 279 X 240 Eastern US domain 
at 12 Km grid spacing and 34 vertical layers. It 
should be noted that these episodes required a 
minimum memory capacity of 8GB and therefore 
could only be executed on 64-bit operating 
systems that are capable of addressing more than 
2GB (this excluded 32-bit operating systems from 
consideration). 
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4. RUNTIME PROFILE 
 
Each 24-hour episode produced in excess of 

22GB of output to disk. Typical wall-clock times 
depended on the platform and compiler chosen. 
They are in the range 32 to 48 hours for serial 
execution and less for MPI enabled execution 
(depending on the number of processes chosen). 

The details of total runtime for the two 
scenarios are shown in Table 4.1 for ia64 and 
x86_64 platforms. The number in parentheses 
represents the number of MPI processes for the 
ia64 case and these results are also shown in Fig. 
4.1. Note that the runtime of the Winter episode 
takes 13% longer. 
 
Table 4.1. Process time in seconds for the Intel 
compiler with the ipo compiler switch group. 

 Winter  Summer 
x86_64 ia64 x86_64 ia64 
131,606 162,325(1) 116,999 143,578(1) 

 90,068(2)  82,406(2) 
 53,975(4)  46,100(4) 
 28,162(8)  25,048(8) 
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Fig 4.1: Runtime in seconds for CMAQ 4.6.1 for the 
Winter and Summer episodes with the Intel ipo compiler 
switch group on the Itanium2 platform in serial and 
parallel modes. 
 

To determine where time is spent during 
CMAQ runtime, profiles runs where conducted 
with the two compilers using gprof (Intel) and 
pgprof (Portland Group), respectively. In the case 
of gprof, profiles were performed on both 
platforms. Since the results were consistent 
across platforms and compilers, typical results of 
pgprof are shown here for the Summer episode. 
Table 4.2 shows a (truncated) sort ranked on time 
per procedure with a decaying dispersion from 
10% to 2% of the total runtime. Only 24% of the 
total runtime is spent in gas chemistry operations 
(procedures with hr prefix). 

Table 4.2. Profile sorted on time per procedure for 
the 24 hour Summer episode on the Pentium 4 
Xeon 64EMT with the Portland Group compiler 
using the ipa compiler switch group. 

Function seconds % Σ% 
hrsolver 21,975 10 10 
matrix 19,716 9 19 
calcact 17,156 8 27 
funcg5a 13,067 6 33 
hppm 10,214 5 38 
kmtab 9,060 4 42 
hrcalcks 7,498 4 46 
hrrates 7,301 3 49 
hrprodloss 6,573 3 52 
y_yamo 6,179 3 55 
calcmr 5,929 3 58 
cksummer 4,927 2 60 
km298 4,881 2 62 
hrg2 4,784 2 64 
vdiff 4,466 2 66 
isoinit3 4,367 2 68 
ibacpos 4,173 2 70 
hrg1 4,018 2 72 
calcph 3,584 2 74 

 
 
Table 4.3. Runtime profile sorted on number of 
calls per procedure for the 24 hour Summer 
episode on the Pentium 4 Xeon 64EMT with the 
Portland compiler using the ipa compiler switch 
group. 

Function calls % Σ% 
kmtab 19,614,348,165 4 4 
Ibacpos 19,614,348,165 2 6 
calcmr 16,000,736,938 3 9 
calcph 14,547,357,820 2 11 
km298 10,663,991,856 2 13 
calcact 9,149,927,307 8 21 
funcg5a 7,842,130,668 6 27 
hrrates 6,882,708,845 3 30 
hrprodloss 6,882,708,845 3 33 
hrg2 6,882,708,845 2 35 
hrg1 6,882,708,845 2 37 
hrg4 6,882,708,845 1 38 
hrg3 6,882,708,845 1 39 
km273 4,330,128,825 1 40 
km248 2,362,506,156 1 41 

 
 

Table 4.3 shows the profile ranked by number 
of procedure calls. While this display is also 
truncated it does show that 41% of the total 
runtime is spent in 15 procedures where the total 
number of calls per procedure ranges from 
2.4x103 to 19.6 x103 million calls. What is 
important is that the top six and last two 
procedures listed in Table 4.3 are from module 
isocom.f and not the gas chemistry. 

In the episodes considered here the top 7 to 9 
routines account for half of the total execution 
time. 
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5. HARWARE PERFORMANCE METRICS 

 
5.1 Operations 

 
In this section selected results of hardware 

performance metrics are summarized for 
execution of the serial version of CMAQ on the 
ia64 platform with the Intel compiler. Some metrics 
are rates (in million events per second) whereas 
others are ratios of two events, and for details see 
presentations by Delic (Delic 2003-2006, 2005, 
2006). Table 5.1 shows the Mflops (FP_OPS_rate) 
achieved for both episodes. Note the lower Mflops 
rate for the Winter episode. Also shown is 
FP_STAL_rate which is a measure of the number 
of cycles per unit time that the floating point (FP) 
units are stalled. The ratio FP_STAL_rate to the 
TOT_CYC_rate shows that for some 20%-22% of 
cycles the FP units are stalled (i.e. not performing 
arithmetic work). The TOT_CYC_rate tracks the 
clock speed of the two processors: 1.5.Mhz (ia64) 
and 3.4Mhz (64EMT). 

 
Table 5.1. Rate metrics for floating point units 

Metric (million/sec) Summer Winter 
FP_OPS_rate 597 507 
FP_STAL_rate 292 315 
TOT_CYC_rate 1415 1409 

 
5.2 Memory access and TLB cache 

 
Memory access is shown in Table 5.2 where 

the total memory instruction rate (MEM_TOT_rate) 
is large. However, this alone is not an indicator of 
poor performance unless other issues coincide. 
One such is the rate of TLB cache misses and 
CMAQ shows an extraordinarily large number of 
data TLB cache misses (instruction TLB cache 
misses are negligible). This indicator suggests that 
memory latency is expanded as the CPU waits for 
a data address translation and fetch from higher 
up the memory hierarchy. Note that for the Winter 
episode the TLB data miss rate is significantly 
higher even though the memory rate is lower. 
 
Table 5.2. Operations for memory access 

Metric (million/sec) Summer Winter 
MEM_TOT_rate 495 417 
TLB_DM_rate 12.7 13.7 

 
5.3 L1 cache 

 
The ia64 memory hierarchy includes L1, L2, 

and L3 cache and Table 5.3 shows the total L1 
cache access rates (L1_TCA_rate) and also the 

total L1 cache miss rates which are seen to be 
negligible even though the access rates are large. 
Virtually all L1 cache accesses are reads 
(L1_TCR_rate).  

 
Table 5.3. Rate metrics for L1 cache access 

Metric (million/sec) Summer Winter 
L1_TCA_rate 673 565 
L1_TCM_rate 11.5 13.6 
L1_TCR_rate 673 565 

 
Cache is divided into instruction and data 

parts and Table 5.4 shows the ratio of instruction 
access to data cache accesses (ICA/DCA). For L1 
cache it is instruction cache access that 
dominates. This is due to the high calling 
overhead noted in Section 4: a control transfer 
such as a procedure call will induce new 
instruction fetches. An issue of concern is that 
there is typically one L1 cache access per FP 
operation. This value could be traced to a memory 
bottle-neck or lack of vector code. Successful 
vector code constructs tend to give fewer cache 
accesses per flop because they enhance data 
locality. 
 
Table 5.4. Ratio metrics for L1 cache access 

Metric (ratios) Summer Winter 
ICA / DCA 14.7 10.6 
TCA / FPOP 1.2 1.1 

 
5.4 L2 cache 
     As is seen in Table 5.5, L2 cache access rates 
are also large, and are dominated by reads, with 
negligible cache misses. 
 
Table 5.5. Rate metrics for L2 cache access 

Metric (million/sec) Summer Winter 
L2_TCA_rate 648 484 
L2_TCM_rate 9.3 13.4 
L2_TCR_rate 532 370 

 
Table 5.6 shows that, conversely to L1 cache, 

here it is the data cache accesses that dominate 
over instruction accesses by more than an order of 
magnitude. This behavior could be traced to 
memory references caused by use of numerous 
scalar variables in several of the frequently called 
procedures in CMAQ code. Again, as for L1 
cache, there is one L2 cache access per FP 
operation (flop), thereby enhancing sensitivity to 
memory latency effects. 
 
Table 5.6. Ratio metrics for L2 cache access 

Metric (ratios) Summer Winter 
DCA / ICA 63.4 39.5 
TCA / FPOP 1.1 1.0 
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 5.5 Memory Bottlenecks and MPI 
performance 

 
This section extends the analysis to MPI 

parallel execution on the ia64 platform. While it 
may appear difficult to generalize, the above 
analysis, when extended to the parallel CMAQ 
execution case, suggests that memory bottlenecks 
occur with increasing severity as the MPI parallel 
process count increases. One example of this is a 
measured increase from 1.1 to 1.7 in mean L1 
cache reads per flop for both episodes. When this 
behavior is correlated with the dominance of L1 
instruction cache access rates, and that over 32% 
to 56% (depending on the episode, or number of 
MPI processes) of L2 instruction cache accesses 
result in a miss, then there may be an apparent 
explanation for where the memory bottle-neck 
occurs in the hardware. It is important to note that 
the memory access rates (particularly the mean 
load rates) change little as the MPI parallel 
process count increases whereas there is a 
corresponding sharp decline (and large spread) in 
the Mflop rate (for both episodes). As the MPI 
parallel process count increases, the increase in 
L1 cache reads per flop correlates with memory 
loads remaining at a steady rate (with small 
spread) while floating point rates decline. Fig. 5.1  
show the correlation between Mflops and L1 
cache reads per flop. There is an obvious steady 
decline in the Mflop rate as the number of MPI 
processes increases. A similar result holds for L1 
cache reads per memory instruction. This 
demonstrates that the load balance between 
arithmetic and memory operations tilts sharply to 
the latter as the number of MPI processes 
increases. 
 
6. EFFICIENCY 
 

For MPI execution of both episodes Fig. 6.1 
shows the parallel speedup observed and it is 
notable that this diverges substantially from the 
linear result. This trend may be traced to a 
decrease in efficiency of CMAQ due to the 
increasing effect of memory latency.  

Results for two efficiency metrics are 
presented in Table 6.1 and two conclusions are 
that (a) parallel execution shows a 11% to 28% 
decrease in efficiency relative to the serial 
execution for flops per cycle, and (b) Parallel 
execution shows a 17% to 19% decrease in 
efficiency for flops per cycle as the number of MPI 
processes increase from 2 to 8. This second 
observation is one explanation for the scaling 

result of Fig. 6.1. A second explanation is the 
memory bottle-neck identified in Section 5.5. It is 
interesting to observe that the Winter episode has 
the lower efficiency values, and this accounts for 
why it takes longer to complete a 24 hour 
scenario.  
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Fig 5.1. Parallel results for CMAQ 4.6.1 for the Summer 
(upper) and Winter (lower) episodes with the Intel ipo 
compiler switch group on the Itanium2 platform. These 
show the correlation of Mflops and L1 total cache reads 
per flop as the number of MPI parallel processes 
increments from 1, 2, 4 and 8 from left to right. The 
serial result corresponds to the left most point in each 
curve. 
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Fig 6.1. Parallel speedup for CMAQ 4.6.1 for the 
Summer and Winter episodes with the Intel ipo compiler 
switch group on the Itanium2 platform. 
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Table 6.1: Efficiency metrics for CMAQ 4.6.1 for 
the Summer and Winter episodes with the ipo 
compiler switch groups using the Intel compiler on 
the x86_64 and Itanium2 platforms. 
 

x86_64 ia64 Efficiency 
metric 
(episode) 

Serial Serial MPI 
parallel 
N = 2 
N = 4 
N = 8  

0.32 
0.28 

Flops per cycle 
(Winter) 

 
NA 

 
0.360 

0.26 
0.29 
0.28 

Memory 
instructions per 
cycle 
(Winter) 

 
0.172 

 
0.298 

0.28 
0.36 
0.32 

Flops per cycle 
(Summer) 

 
NA 

 
0.422 

0.30 
0.34 
0.33 
0.32 

Memory 
instructions per 
cycle 
(Summer) 

 
0.198 

 
0.350 

0.32 
 

To compare efficiency of the two platforms 
used here, Table 6.1 also shows results for 
memory efficiency with the same compiler. The 
Mflops were not measured for the x86_64 
platform. Note the much higher memory efficiency 
metric for the ia64 platform. 
 
7. CMAQ CODE 

 
7.1 Problem areas 
 

The three fundamental problem areas are: 
1. Insufficient use of vector instructions 
2. Excessive control transfer instructions 
3. Inefficient memory access 

 
The workload spread over the top procedures 

listed in Table 4.2 ranges from 3% to 10% of the 
total runtime. Source code inspection of the most 
frequently called procedures identified in Table 4.3 
reveals that three have 15 lines (or less) of 
executable code, and others are dominated by 
scalar arithmetic and logical operations. Thus, not 
surprisingly, these procedures invariably have 
negligible vector loop structure and consist 
predominantly of simple arithmetic statements and 
conditional code blocks. Such circumstances can 
be expected to lead to CPU pipeline stalls as 
cache lines are flushed and new instructions are 
fetched from memory. Also, the poor vector 
structure in the CMAQ EBI solver code severely 
limits the potential compiler optimization 

opportunities on commodity architectures. Table 
7.1 correlates the problem area noted above for 
each procedure. 
 
Table 7.1: Top procedures in CMAQ 4.6.1 that account 
for 40% of the total runtime in Table 4.3.  The “LOC” 
column gives an estimate of the lines of code in each 
procedure. 

Problem area name 
1 2 3 

Estimated 
LOC

(ibacpos)  Y  6 
(kmtab)  Y  29 
(calcmr) Y  Y 150 
(km273)  Y Y 14 
(calcph)  Y  16 
(km298)  Y Y 14 
(calcact) Y  Y 127 
(hrg3) Y  Y 60 
(hrg2) Y  Y 319 
(hrg4) Y  Y 60 
(hrrates) Y  Y 224 
(hrprodloss) Y  Y 500 
(hrg1) Y  Y 314 
(funcg5a) Y  Y 50 

 
7.2 Remedies 
 

A detailed analysis of compiler optimization 
abilities was undertaken and the result was that 
both compilers gave only limited success in 
optimizing the CMAQ code in the EBI solver 
version. As a consequence the onus for improving 
runtime performance falls on the code designers. 
In this study no code intrusive optimizations were 
attempted. However, the ability of compilers to 
perform inlining procedures was investigated to 
see the effects of reducing control transfer 
instructions originating from calling overhead. 
Automatic inline options did not inline the most 
frequently called procedures identified in Tables 
4.3 and 7.1. Nevertheless, both compilers used 
here allow (in principle) the forced inlining of 
named procedures. These features were explored 
but failed to function entirely successfully. 
However, the Portland Group compiler was able to 
force the inlining of kmtab, ibacpos, and funcg5a, 
and showed a noticeable reduction in runtime. 
Obvious procedure groups that are targets for 
optimizations through code transformations and 
inline actions include call trees leading to: 

 Subroutine hrsolver and procedures called 
from there: hrdata, hrrates, hrprodloss, 
hrg1, hrg2, hrg3, and hrg4. 

 Subroutine calcact which is called from 
numerous places in CMAQ 

 Similarly for calcmr, calcph, kmtab, 
ibacpos, etc. 
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The issue of adding vector code to the CMAQ 
EBI solver will require major code restructuring. By 
contrast the Rosenbrock and Gear solvers have 
inherent vector structure and optimization 
opportunities that are promising (Delic, 2008).  
 
8. CONCLUSIONS FOR CMAQ 

 
8.1 Serial execution 

 
 Delivers more efficient performance when 

compared to parallel mode 
 Exhibits performance-inhibiting source 

code constructs 
 Does not match commodity hardware 

effectively because of: 
- Insufficient use of vector instructions 
- Excessive control transfer instructions 
- Inefficient memory access  

 
8.2 Parallel execution 

 
 With increasing number of parallel 

processes: 
- The load balance of memory to 

floating point operations increases 
- Parallel speedup increasingly departs 

from linearity 
- The average CPU idle time increases 

for all CPU’s 
 

8.3 Efficiency and architectures 
 
For CMAQ, the ia64 (Itanium2) architecture is 

more efficient than is the x86_64 (64EMT) 
platform despite the difference in clock rate.  
 
8.4 Next steps 

 
Opportunities abound for significant 

performance enhancement of CMAQ through 
optimizations and code restructuring. Specifically, 
next steps should: 

 Inline the most frequently called 
procedures that do little work 

 Streamline the gas chemistry solver 
group of procedures 

 Seek opportunities higher up the call 
tree for code restructuring to enhance 
vector instructions and data locality 

 
8.5 Can compilers help? 

 
The compilers used here generate efficient 

code for floating point and memory operations 

whenever they find efficient vector code 
constructs, but they do have very limited 
procedure inlining optimization support. 
 
8.6 Will future hardware help? 

 
Future hardware offers more cores per CPU 

socket, and unless data parallel structures are 
uncovered by developers, CMAQ with the EBI 
solver will deliver even lower efficiency than 
reported here. The situation is aptly summarized: 
“The road to high performance [will be] via multiple 
processors per chip … this signals a historic 
switch from relying solely on instruction level 
parallelism (ILP) … to thread-level parallelism 
(TLP) and data-level parallelism (DLP). Whereas 
the compiler and hardware conspire to exploit ILP 
implicitly without the programmer’s attention, TLP 
and DLP are explicitly parallel, requiring the 
programmer to write parallel code to gain 
performance” (Hennessy, 2007) 
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