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Summary

The CMAQ adjoint model has been used to set up a data assimilating system based on the 4DVar method. 
Ground-level  observations of  NO2  and tropospheric  NO2  columns retrieved from the satellite  instruments 
GOME2 and OMI have been assimilated into the model. The 4DVar method has been used to optimize both 
initial conditions and emission factors. Simulations and forecasting experiments have been performed on 
mesoscale domains with different horizontal resolution.

Introduction

We used for our simulations the model pairs WRF-CMAQ and WRF-CAMx. Both pairs have been configured 
for three nested domains with horizontal resolutions 27, 9 and 3 km. As a preliminary work, a comparison of 
retrieved columns with their model counterparts has been done with the pair WRF-CAMx. [Eben et al., 2007]. 
The information contained in satellite columns and its potential for data assimilation has been investigated. 
Besides data assimilation,  several  possibilities  for using this  information have been found.  In  particular, 
model  bias  and stations  with  low representativeness can be detected from averaged differences of  the 
observed and modeled columns. Another positive contribution of satellite columns is their lower sensitivity to 
daily cycles of NO2 concentrations, which enables better tracking of transport phenomena. 

In  earlier  work  [Eben  et  al.  2005]  it  was  found  that  correction  of  model  concentrations  achieved  by 
assimilation of in situ observations is effective if we want to improve e.g. an exposure index estimated from 
long-term off-line simulations. For the purpose of prediction this kind of data assimilation has a limited benefit 
as long as model bias and errors in emission inputs are present. Another cause of this behavior is the lack of 
information for higher levels of troposphere. 
In order to improve the forecast performance of the model, further sources of information are required and 
emission constraining appears to be necessary. Since the latter is hard to achieve by ensemble techniques, 
a CTM capable of adjoint modeling had to be selected. The adjoint operator for the model CMAQ was being 
developed  by  the  CMAQ  community  during  recent  years  ([Hakami,  2007]).  We  have  finalized  the 
parallelization of the adjoint operator. We also contributed several technical improvements to the adjoint code 
so as to enable its use for real cases. Finally, observation operators for satellite columns and their adjoint 
have been implemented. Thus the 4DVar method could be used. We have done some adaptations in order to 
constrain both initial conditions and emissions.

Assimilation of satellite columns and in-situ observations

We used a similar approach as [Elbern et al., 2007]. As a first step, the variability in emissions has been 
roughly  parameterized by  allowing  for  an emission factor,  specific  for  each gridpoint.  This  leads  to  the 
discrete formulation of the cost function

where
● c0, cB are optimized and first guess concentrations in time t0

● e, eB are optimized and first guess emission multiplicative factors
● c = M(c0,e,t) are the modeled concentrations
● H is the observation operator
● y are the available observations, both satellite-retrieved columns and in situ observations
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● B,  K and  R and the covariance matrices for initial conditions, emission factors and observations 
errors

The cost function  J is minimized utilizing the L-BFGS-B algorithm [Zhu 1997] and the gradient of  J with 
respect to joint variable (c0 ,e) can be expressed as

This gradient is calculated by means of the adjoint method. For easier problem constraining we apply a 
logarithmic transformation of variables

The variable u can be considered as unconstrained.

The implementation of the adjoint in CMAQ is done by similar means as in the model STEM (see  [Sandu et 
al., 2003]). An experimental CMAQ adjoint code was implemented in California Institute of Technology and 
Virginia  Polytechnic  Institute.  This  code  contains  the  adjoint  model  for  gas  phase  processes  for  the 
mechanism CB4. We have parallelized it in order to be able to process larger domains and real cases and 
we implemented our 4DVar assimilation above this adjoint code.
The observation operator  H has two separate versions, one for treating tropospheric columns obtained by 
the retrieval  process and the other  one for  handling in-situ observations.  The first  one is  computed by 
numerical integration and accounts for the spatial intersection of the satellite instrument pixel with grid cells 
and for the influence of the retrieval process given by the averaging kernel operator [Eskes and Boersma, 
2003]. The second one is straightforward. If there are more than one station in a grid cell, an average of all 
measurements has been taken for y.
Similarly the matrix R is assembled from two blocks. The estimates of standard deviations of the retrieved 
NO2 columns  are  based  on  values  supplied  by  the  TEMIS  service  of  the  European  Space  Agency 
(www.temis.nl).  These  values  are  multiplied  by  a  factor  (0.3  in  this  experiment)  which  takes  into 
consideration smaller time variability of these values in comparison with ground values and thus longer time 
representativity of these values. As for the block corresponding to the in-situ observations, the base standard 
deviation of the errors for the stations is calculated as 20% of the NO2 average over all stations in the domain 
during a day. Representativeness errors are taken into account by multiplying this constant by a factor which 
depends on the type of the station. After some test runs, the multiplicative coefficients were set up to 20, 10 
and 1 for urban, suburban and rural stations respectively. This rough approach will be generalized in the 
future. Only background stations have been taken into account. The matrices  B a  K are taken diagonal, 
some tests were done with covariance matrices constructed by means of a diffusion operator.

The assimilation experiment 

In our experiments we used three nested domains (see Fig. 1). The outer domain encompasses most parts 
of Europe (horizontal res. 27km). It was used for obtaining realistic initial and boundary conditions for the 
assimilation run.  The assimilation experiment  was performed on a subwindow of  the outer  domain with 
72x52 gridpoints. In some simulations, an intermediate domain (not shown in the figure, res. 9km) was used. 
It was also used for all WRF nested runs. The fine 3km resolution domain covers north-west part of the 
Czech Republic and adjacent regions of Germany (62x46 gridpoints). The emission data are based on the 
EMEP1 inventory, the emission model was the same as in [Eben et al., 2005]. 

Tropospheric NO2 columns are retrieved from measurements 
obtained by satellite instruments OMI and GOME2 (provided 
by the TEMIS service). The data contain all other necessary 
information, in particular the averaging kernel operator, the 
air mass factor etc. The necessary meteorological variables 
for constructing of the observation operator are taken from 
the WRF output files processed by MCIP3.
The  overpass  of  the  satellites  above  our  domains  occurs 
usually twice daily in the interval from 9am to 3pm. In Fig. 2 
there is a typical example of the tropospheric column data 
(white squares represent cloudy conditions). 

1 EMEP – European Monitoring and Evaluation Programme, www.emep.int
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Fig. 1: Simulation domains: outer domain, 
assimilation domain, fine domain.



Fig. 2: An example of retrieved tropospheric column data from GOME2 (left) and OMI(right) for the coarse assimilation 
domain.

Altogether 280 background monitoring stations have been included into the experiment.2 Their location in 
coarse and fine domain is in Fig. 3.

Fig. 3: Location of ground-level stations in the coarse domain (left) and in the fine domain (right) 

We selected for our experiments an assimilation period of eight days from June 28 to July 5. A free run of 
CMAQ, 21 days on the outer domain, was performed to obtain reasonable initial and boundary conditions. 
For each day sequentially, an assimilation run has been performed, assimilating both NO2  columns and in-
situ observations.  A one-day-ahead forecast has also been computed,  using emission factors  and initial 
conditions obtained by 4DVar for the previous day. 

Results

During the first two days of assimilation, the estimated emission factors reached a fairly stable solution and 
since the third day the cost function showed only a decrease of a few percent, even though the number of 
observed satellite pixels (and thus the value of the cost function) varies due to changing cloud coverage. The 
map of emission factors for one day and the average from the entire assimilation period is shown in Fig. 4 
and 5. 

Fig. 4: Optimized emission factors for July 3, 2008
Fig. 5: The average of the optimized emission factors from June 29 to July 5, 2008

2 The selection of data has been dictated by their availability. We have used data from the UK and Belgium (supplied by courtesy of 
the European Environment Agency), Germany (provided by the Umweltbundesamt www.uba.de) and Czech republic (provided by 
the Czech Hydrometeorological Institute).



Fig. 6 depicts the changes between the free run and concentrations corrected by 4DVar. It is seen that both 
in situ observations and satellite columns contribute to the corrections. In particular, the corrections in France 
and Italy are induced by satellite observations only. In Fig. 7 there is a sample map of the gradient of the cost 
function with respect to the emission factors. 

Fig. 6: Differences between optimized and referential concentrations of NO2 for July 2, 2008 20:00
Fig. 7: Emission factors gradient for the first iteration for July 3, 2008

Table 1 contains results of the one-day ahead forecast, compared with these of the free run. It is seen that 
the forecast from assimilated values outperforms the free run, but the bias of the forecast is larger. In Fig. 8 
we see one particular forecast for the fine domain, compared with the corresponding free run and the zoom 
of the coarse domain. Assimilation helps here to identify and localize sources in a better resolution (beyond 
the downscaling due to better orography and meteorology), even though the initial emission inventory is 
coarse. 

No. of 
observations

Free run 
mean residual 

Forecast 
mean residual 

Free run
mean absolute res. 

Forecast 
mean absolute res. 

 58567 2.3 12.1 20.15 17.7

Tab 1. Mean residuals (i.e. differences of hourly observed value at a station and the model value) and absolute residuals 
for the free run and forecast from assimilated initial conditions and parameters. We excluded small values of NO2 from 
the evaluation, so that only values of NO2 larger than 20, either in the observation or in the model, enter the evaluation. 
All values are in μg/m3.

Fig. 8: Referential (upper left) and optimized (upper right) concentrations in ppmV for July 1, 2008 20:00 in the fine 
domain. The differences of the optimized and referential concentrations (lower left) and the optimized concentrations in 
the zoomed coarse domain (lower right).



In Fig. 9 there is an example of the time profile of concentrations for one of the stations in the polluted area, 
where the downward trend in emissions occurred during recent years. Although using an emission factor 
reduces the error substantially, the parameterization is too crude and a generalization is to be made, while 
keeping stability of the solution.

Fig. 9: Concentrations on obs. station Litoměřice (North-West Bohemia, the strongest changes by the assimilation).

Conclusions and outlook

The assimilation experiment  shows stability  and good performance of  the 4DVar method in our  setting. 
A greater flexibility of parameterization of emission corrections will be needed since a simple multiplicative 
factor cannot achieve a better fit of time profiles. A subsequent statistical analysis of the relation between 
corrected  emission  fields  and  parameters  of  the  emission  model  should  lead  to  the  adaptation  of  the 
emission model itself. 

The improvement in forecasting NO2 concentrations due to  assimilation of  in situ and satellite observations 
is moderate so far, but evident.  Also, a deeper investigation of complementarity between in-situ and satellite 
observations, is required. This would result in a better description of vertical profiles of NO2. Finally, joint 
assimilation of  other important  species, in particular ozone, as well  as more precise modeling of  spatial 
covariances could improve the allover performance of the model.
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