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1. INTRODUCTION 

 
The goal of this activity is to improve the 

computational efficiency of CMAQ so that the 
computational demands of large modeling 
domains or long time periods can be met with 
simulations in a reasonable amount of time. When 
conducting time-evolving reactive flow simulations 
with chemistry and transport on 3 dimensional 
spatial grids, the computational power available 
usually places limits on the spatial and temporal 
resolution, as well as the detail to which the 
chemistry can be simulated. Parallel computing is 
one way to lower this burden. CMAQ has been 
released as a parallel code for several years. 
Parallelism in CMAQ is accomplished through the 
distributed parallelism method in which identical 
versions of the executable code run in parallel on 
multiple processor elements (PE) of a computer 
with an interconnect between PEs to transfer data 
and messages. The MPI (Message Passing 
Interface) package facilitates communications 
between PEs. Each PE knows its identity and its 
responsibilities. Generally in spatially gridded 
problems the grid itself is partitioned, with a 
different sub-domain assigned to each PE. It is the 
responsibility of the programmer to insert MPI 
subroutine calls in the code at locations where it is 
necessary for a PE to gather/send information 
about neighboring grid cells from/to another PE. 

During the initialization phase of a CMAQ run 
the grid is partitioned among a user-specified 
number of PE’s, assigning approximately equally 
sized, contiguous portions of the grid to each. The 
user has decides the number of divisions in the 
column- and row-wise directions. With each 
processor now responsible for calculations of a 
fraction of the total grid we see significant speedup 
over simulations that use a single processor. 

In general for parallel codes, improvement in 
performance does not scale linearly with number 
of PEs. Some of the causes for this are:  
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1. Parts of the code are simply not 
parallelizable and execute redundantly on all 
the PEs.  

2. Load imbalance between PEs causes those 
with lower loads to wait for the others until 
they have finished a task 

3. Increased inter-PE communication costs 
(relative to actual computational costs) as the 
number of computational sub-domains 
increases or due to less-than-optimal choice of 
sub-domain topology. 

4. Operations whose cost is dominated by 
startup costs (latency) and not so much by the 
amount of work or the reduced transfer of 
data. Disk accesses are in this class. 

 
Bottlenecks to efficient parallelization can 

occur for any or all of these reasons. A measure of 
the inefficiency is the quantity scalability. E.g. if the 
number of PE’s is increased from one to four, but 
the speedup is only a factor of two, then we say 
that the scalability is 50%. It is as if each PE has 
only 50% of the strength it has in a single PE, 
serial job. Generally scalability falls as the number 
of PEs increases.  

When remedying the problem it is important to 
keep in mind the ultimate goal, which is to reduce 
the simulation time to an acceptable amount of 
time. Many users consider a 3-day simulation to 
be fine, with the limit of acceptability to be about 5 
days. If it is possible to achieve this by simply 
assigning more PEs to the problem, then the user 
should do so. However often the computing 
resources are shared between users or charges 
are based on PE-hours utilized, and it is not 
possible to simply throw more resources at the 
problem. In a modeling project on which we are 
involved, (using CMAQ with a 190x190x27 grid, 
SAPRC99, for 124 modeling days), the time to 
conduct a simulation with 9 PEs is 20 days. Given 
that input conditions and parameters will have to 
be varied, multiple simulations will have to be 
conducted. Clearly it is desirable to use a larger 
number of PEs, however, because of current 
scalability problems we do not use more than 9.  
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In this study we have conducted timing tests of 
parallel CMAQ v4.5 with different numbers of PEs 
and analysed the results, isolating the locations 
and causes of loss of scalability, and providing 
suggestions for remedying them. 

 
2. DETAILS OF THE SIMULATION AND 
COMPUTING CLUSTER 
 

The simulation is conducted using CMAQ v4.5 
with the SAPRC99 gas-phase mechanism. The 
simulated domain is shown in Figure 1.  

 
Figure 1 The domain covers the California 

central coast and the Central Valley, and both the 
San Francisco and Sacramento metropolitan areas. 

The domain has 96 cells horizontally, 117 cells 
vertically, with each cell side being 4 km. The 
vertical extent of the domain is up to pressure of 
100 mbars, about 16km above sea level. The 
meteorology is that of a 5-day episode from 29th 
July to 3rd Aug. 2000. The 50 original vertical 
layers of the MM5 simulation have been 
consolidated to 27, giving a total of 96×117×27 ≈ 
300K cells. Emissions come from Area, Point, and 
Biogenic and Motor Vehicle (MV) sources. 

The CMAQ simulations are conducted as 
parallel simulations on a 28-node Linux cluster 
with two Athlon processors and 2 G Bytes RAM 
per node. The cluster is rack-based and has a fast 
2 Gbits/s Myrinet Interconnect. The cluster can be 
viewed at (http://eetd.lbl.gov/AQ/stonse/mariah/) 

Depending on the needs of the simulation we 
choose between the SMVGEAR (Sparse Matrix 
Vectorized Gear) and the EBI (Euler Backward 
Iterative) solvers. SMVGEAR (the stiff solver), is 
the more computationally expensive of the two, 
consuming a large share of the total CPU time. 

Our main reason to occasionally resort to this 
solver is that the Process Analysis module, a 
sophisticated model diagnostic, has only been 
implemented to work with SMVGEAR. The EBI 
solver, which was first released with CMAQ 
version 4.5, produces accurate results and has 
resulted in considerable speed-up compared to 
SMVGEAR. The computational load of the EBI 
module is comparable to that of the advective and 
diffusive transport modules. We generally use EBI 
for simulations that do not require Process 
Analysis. For both solvers, scalability is observed 
to decrease as the number of PEs increases. For 
the other physical processes: the “yamo” 
advection option is used, “eddy” vertical diffusion, 
“multiscale” horizontal diffusion, and “noop” for 
PinG, aerosols, and clouds. 

 
3. METHOD 

We have inserted timing calls into CMAQ to 
measure the elapsed time between various points 
in the code. The actual timing is provided by the 
MPI function MPI_WTIME, which returns the total 
clock time elapsed since the beginning of the 
simulation. Since we are the sole user of the 
cluster and the memory per node is large enough 
that CMAQ never undergoes memory swap, the 
result returned by MPI_WTIME is an accurate 
measure of time elapsed within the code, be it 
time spent in calculation, communication or disk 
access. We have encapsulated MPI_WTIME 
within a user-friendly interface. This allows 
simultaneous measurement of multiple elapsed 
times in different parts of the code. In general, 
most of the timing calls have been made in the 
scientific processes section of the code 
(Subroutine SCIPROC) or its daughter 
subroutines, which calculate the chemistry, 
horizontal/vertical diffusion, and horizontal/vertical 
advection. Within these routines, measurements 
are made of times spent for pure calculation, inter-
PE communication, and disk access. Elapsed 
times are written to the CMAQ log files at user-
defined intervals. In the post-processing phase the 
information is gathered and processed for 
visualization by a simple C++ programme. We use 
quantities like Scalability (also called Parallel 
Efficiency) and Load Imbalance to characterize the 
parallel performance. Scalability is defined as: 

(Timeserial) / (Timeparallel × No.PEs) 
Load imbalance between several PEs which 

have been timed for a particular task is defined as: 
(Timeslowest – Timemean) / Timemean
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4. RESULTS AND ANALYSIS 
Timing results have been made for 1 PE serial 

and several parallel cases. The parallel cases 
generally use 9 and 18 PEs, in which the grid is 
split 3×3 and 6×3 respectively in the column- and 
row-wise directions. A few other grid-partitioning 
schemes have also been tried. All results use 
identical inputs and identical scientific processes 
(with the exception of the chemical solver) and are 
for the same 24-hour simulation period. 

 
4.1 Serial Simulations 

Tables 1 and 2 show times spent in various 
scientific modules for serial SMVGEAR and EBI 
simulations, respectively. 

Table 1 Times for a serial SMVGEAR solver 
simulation, showing time spent in chemistry 
(CHEM), horizontal advection (HADV), 
horizontal diffusion (HDIFF), vertical diffusion 
(VDIF), vertical advection (ZADV) and their 
sum. The total simulation time was 255000 s. 
“Total time” column is the total time spent in a 
particular scientific module. Fraction is the 
fraction of time for that module divided by the 
sum. 

Module name Total time (s) Fraction 
CHEM 238000 0.94 
HADV 7010 0.027 
HDIFF 634 - 
VDIF 6680 0.027 
ZADV 733 - 
Sum 253000 ≡ 1 

 

Table 2 Times for a serial EBI solver 
simulation. The total simulation time was 
24920 s. 

Module name Total time (s) Fraction 
CHEM 7370 0.32 
HADV 7610 0.33 
HDIFF 633 0.027 
VDIF 6682 0.29 
ZADV 733 0.03 
Sum 23028 ≡ 1 

 
 It is apparent that chemistry dominates in 

SMVGEAR, whereas for EBI, the chemistry 
(CHEM), horizontal advection (HADV) and vertical 
diffusion (VDIF) all use comparable amounts of 
time. Vertical advection (ZADV) and horizontal 
diffusion (HDIFF) use negligible amounts, however 
we did continue to monitor them for scalability in 
parallel simulations in the event that they could 
present a problem later. 

4.2 Parallel SMVGEAR Simulations 
Table 3 shows total simulation time and 

scalability for 1, 4, 9, 18 and 25 PE cases. Also 
indicated is the degree of load imbalance within 
the chemistry between the slowest PE and the 
mean of all PEs. 

Table 3 Scalability trend with the SMVGEAR 
solver. 

# PEs Time (s) Scalability 
(%) 

CHEM 
imbalance 

(%) 
1 255K ≡ 100 --- 
4 70K 91 11 
9 33K 86 16 
18 18K 78 20 
25 14K 73 20 

The load imbalance even for the 25 PE case is 
only on the order of 20%, and the scalability of the 
overall code is good even for 25 PEs. The 
chemistry load imbalance accounts for much of 
the scalability loss (since chemistry accounts for 
such a large fraction of the calculation), except for 
the 25 PE case, in which other modules may have 
increased influence 

 
4.3 Parallel EBI Simulations 

Table 4 shows the performance of the various 
scientific modules for 1,9 and 18 PE runs using 
the EBI solver.  

Clearly some modules scale well (chemistry 
(CHEM) and vertical advection (ZADV)), and 
others poorly. Among those that scale poorly 
horizontal diffusion (HDIFF) uses only a small 
fraction of the total time and so does not play a 
role in overall scalability degradation. With the 
information in the table above we can experiment 
with what-if scenarios to see the benefit of 
improving the scalability in a given scientific 
module. HADV is clearly the largest cause for the 
drop in scalability, followed by VDIF and then by 
non-SCIPROC computation. This last measure is 
apparent from the difference between the “Sum” 
entry, which is the sum of the 5 scientific 
processes called from SCIPROC, and the “Total” 
entry, which is the total time of the entire CMAQ 
simulation, and which includes all of the 
initialisation. 

We shall now concentrate on isolating the 
cause of the HADV scalability drop. Further timing 
calls were inserted inside the HADV subroutine 
and its daughters. In particular, these were placed 
to return 

1. the total times inside selected daughter 
subroutines,  
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2. the times spent for MPI communication 
calls and 

3. the times spent for disk accesses. 

 Table 4 Scalability trend with the SMVGEAR 
solver differentiated by scientific module. 
“Total time” column is the average over all PEs 
of the total time that each PE has spent in a 
particular scientific module. The row “Total” 
contains the total time including that spent 
outside of the scientific processes. 

Module 
name 

Total 
time (s) 

Fraction Scalability 
(%) 

1 PE 
CHEM 7370 0.34 ≡ 100 
HADV 7610 0.35 ≡ 100 
HDIFF 633 0.029 ≡ 100 
VDIF 5310 0.25 ≡ 100 
ZADV 733 0.034 ≡ 100 
Sum 21656 ≡ 1 ≡ 100 
Total 24920 --- ≡ 100 

9 PE 
CHEM 821 0.24 99.7 
HADV 1644 0.48 51 
HDIFF 139 0.04 50 
VDIF 727 0.21 81 
ZADV 81 0.02 100 
Sum 3412 ≡ 1 70 
Total 4255 --- 65 

18 PE 
CHEM 418 0.18 98 
HADV 1272 0.56 33 
HDIFF 87 0.04 40 
VDIF 457 0.20 64 
ZADV 40 0.02 100 
Sum 2274 ≡ 1 53 
Total 2821 --- 49 

 
Table 5 shows some of these times. 

For the 1 PE case we see that actual 
computation (HADV Work) accounts for most of 
the time, and that most of this is spent inside the 
HPPM subroutine, which is a 1-dimensional, row- 
or column-wise advection calculation using the 
piecewise parabolic method. For the 9 and 18 PE 
cases communication dominates the cost, being 
larger than actual computation times. “HADV 
Work” scales well with number of PEs. “HADV 
Comm”, the communication cost, scales very 
poorly. The source of most of the communication 
cost is within HPPM, as “HPPM Comm” accounts 
for most of “HADV Comm”. Disk file access also 
scales very poorly, and if and when the 

communication scalability problem is solved, it too 
will have to be dealt with. 

Table 5 Time spent in HADV module, 
differentiated by function. “HADV Work” is 
time spent in actual computation. “HADV 
Comm” is time spent in MPI communication. 
“HADV Disk” is time spent on disk file access. 
“HPPM total” is total time spent in the 
subroutine HPPM, and “HPPM Comm” is that 
part of MPI communication that occurs within 
HPPM. 

Name Total time (s) 
1 PE 

HADV Work 6780 
HADV Comm 209 
HADV Disk 585 
HADV Sum 7574 
HPPM total 4800 

HPPM Comm 168 
9 PE 

HADV Work 497 
HADV Comm 903 
HADV Disk 280 
HADV Sum 1680 
HPPM total 1189 

HPPM Comm 797 
18 PE 

HADV Work 264 
HADV Comm 872 
HADV Disk 258 
HADV Sum 1394 
HPPM total 978 

HPPM Comm 767 
 
HPPM is called numerous times within the 

HADV module, and on each call calculates the 
advective transport in the x or y direction by the x 
or y component of velocity. We expect its 
communication costs to depend on the orientation 
of the grid partitioning. In a 9 PE simulation with 
the grid partitioned 3 ways in each direction, the 
mean cost of HPPM communication per advection 
time step is about 0.7s whether HPPM is working 
in the row- or column-wise direction. However for 
a 9 PE simulation which uses a grid partitioned 9-
ways in the row-wise direction and not at all in the 
column-wise direction, the cost of HPPM in the 
row-wise direction rises to 2.2 s but drops to 0.02 
s in the column-wise direction, for which no actual 
inter-process communication is necessary. 
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5. CONCLUSIONS AND 
RECOMMENDATIONS 
 

5.1 SMVGEAR Simulations  
When used with the SMVGEAR solver CMAQ 

v4.5 scales fairly well even up to 25 PEs. Beyond 
this, we have found that load imbalance in the 
chemistry and possibly scalability degradation 
from HADV cause the overall scalability to drop 
below 70%. Load balancing for chemistry alone 
can be implemented fairly easily since chemistry is 
calculated on a per-grid-cell basis. A 
producer/consumer model in which equal 
workloads are parceled to the PEs can result in a 
very high scalability. 

 
5.2 EBI Simulations  

Scalability of 65% is seen with EBI even with 9 
PEs. The dominant cause of scalability decrease 
is communication within the HPPM subroutine of 
the horizontal advection scientific module. Using 
information from Tables 4 and 5, we calculate that 
reducing this communication time to that of the 
disk file access time would result in an overall 
scalability of 76% with 9 PE and 62% with 18 PE 
instead of the current 65%  and 49% respectively. 
Methods to implement this might be (1) to 
restructure the HADV code to process blocks of 
rows/columns at one time instead of single 
rows/columns at a time or (2) to initially setup 
alternate MPI communicators, grid sub-domains 
and stencils aligned along the row and column 
directions and use these for horizontal advection. 
The former method would be easier to implement. 
The latter may require recoding of the stencil 
library to permit multiple stencils and to allow 
CMAQ to dynamically switch to using a different 
stencil during run time. 

Other causes of scalability decrease which we 
have identified, and would be the next bottlenecks 
to address, are the disk accesses during 
horizontal advection and vertical diffusion. 
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