
PARALLEL I/O ADVANCEMENTS IN AIR QUALITY MODELING SYSTEMS

Todd H Kordenbrock*, Ron A Oldfield
Computer Science Research Institute, Sandia National Laboratories, Albuquerque, NM, USA

1. INTRODUCTION

Over the past year, researchers at Sandia

National Laboratories worked closely with
researchers at the National Oceanic and
Atmospheric Administration to analyze
performance and make recommendations about
how to improve performance and scalability of the
Community Multiscale Air Quality (CMAQ) code.
After some preliminary analysis, we identified a
number of potential optimizations – particularly in
the input/output libraries used by CMAQ. This
paper describes one such optimization that allows
CMAQ to write output files in parallel using MPI-IO
and parallel-netCDF. These changes led to a 48%
improvement in write performance of CMAQ using
a representative dataset.

2. CMAQ I/O IN A CLUSTER

The CMAQ code uses the Models-3 I/O API

(IOAPI3) to manage the I/O of all input and output
files. IOAPI3 is widely used in the Community
Models & Analysis System (CMAS) community
because it performs much of the work involved
with file creation and definition. IOAPI3 also
performs necessary data transformations between
memory and disk. These IOAPI3 features ensure
that data files can be shared within the CMAS
community.

IOAPI3 is built on netCDF, the de-facto
standard in the atmospheric modeling field.
NetCDF is an array-oriented I/O library with an
easy to use API and a portable, self-describing,
binary file format. NetCDF was originally designed
for sequential computing and thus has a few
limitations that restrict its usefulness for parallel
applications. Most notably, it does not support
concurrent writes from multiple processes. The
netCDF metadata is cached in memory in each
process and gets out of sync if multiple processes
write to the same file.

*Corresponding author: Todd H Kordenbrock, Sandia
National Laboratories, PO Box 5800, MS-1319,
Albuquerque, NM 87185-1319; e-mail:
thkorde@sandia.gov; phone: 505-844-7181; fax:
505-845-7442

The CMAQ code addresses this problem by
selecting a single “I/O node” to perform the I/O on
behalf of the other processors. This modification
exists in a thin software layer (called PARIO) that
mimics the IOAPI3 API. Instead of each process
independently writing to a shared netCDF file,
each processor sends its portion to the I/O node.
The I/O node then gathers the data and writes to a
single netCDF file using the original IOAPI3 library
(Fig. 1a). This approach allows a parallel
application to use netCDF, but it is not an efficient
solution with respect to I/O. Dumping all data to a
single node creates a significant I/O bottleneck at
the I/O node, especially as the number of compute
nodes increases to hundreds to thousands of
processors. It also requires the I/O node to have
enough memory to store the entire dataset before
writing, which can be a problem for large
applications. Finally, performing the write from a
single node prevents the application from making
efficient use of parallel file systems or parallel I/O
libraries that may allow concurrent writes from
different processors.

3. PARALLEL I/O FOR CMAQ

After reviewing the CMAQ I/O framework, we
investigated the modifications required to replace
netCDF with parallel-netCDF (pnetCDF) (Li 2003).
PnetCDF is an implementation of the netCDF
standard that extends the API to include support
for parallel I/O. PnetCDF provides parallel I/O
support by layering the pnetCDF library on top of
the MPI-IO parallel I/O interface (Gropp 1999).

Parallel I/O improves I/O access through
advanced techniques like two-phase I/O and data
sieving (Thakur 1999). These optimizations
enable the compute nodes to cooperate in a way
that allows efficient parallel access to the storage
system. For example, in two-phase I/O compute
nodes first aggregate data on a subset of the
nodes, and then write the aggregated data to the
storage system in parallel (Fig. 1b). The
aggregation of data reduces the number of I/O
operations and allows for large contiguous
writes—reducing the seek-time overhead incurred
by a large number of non-contiguous write
requests.

1

Fig. 1a. Collecting data at a single I/O node and
writing to a locally attached disk

Fig. 1b. Using two-phase I/O to aggregate data
and write to a parallel file system

Fig. 2. Original (left) and parallel I/O (right)
software stacks

To fully exploit the available I/O parallelism in
a cluster, applications often write to a parallel file
system that distributes the file to multiple storage
devices to increase aggregate throughput.

Figure 2 illustrates the different software
stacks for the original and parallel I/O version of
CMAQ. To incorporate pnetCDF into the CMAQ
code, we removed the PARIO library and
developed a thin software layer to bridge the API
gap between IOAPI3 and pnetCDF. The netCDF
bridge has two functions: emulate the netCDF API
on the frontend, and manage the pnetCDF API on
the backend. We then stored pnetCDF files to the
PVFS2 (Latham 2004) parallel file system to
distribute data across storage devices. We chose
PVFS2 because the MPI-IO library that sits below
pnetCDF is optimized to use the native PVFS2
parallel I/O interface.

By managing the pnetCDF API on the
backend, the netCDF bridge is able to supply the
required MPI-IO parameters to pnetCDF. The
netCDF bridge also allows users to provide hints1
to MPI-IO and the underlying file system to further
optimize performance.

The added support for parallel I/O required
minimal changes to the main CMAQ code. All
parallel I/O optimizations are configured at compile
time. Users that do not have the libraries or
storage system to support parallel I/O can use the
original version without any code modifications.

4. TESTING AND PERFORMANCE
EVALUATION

We evaluated the modifications to the CMAQ
code by running a series of experiments on a
small development cluster at Sandia National
Laboratories. The cluster consisted of 32 IA32
dual-processor compute nodes with Myrinet
interconnect. Each compute node had an 18 GB
SCSI disk attached, and we used 6 compute
nodes to support the PVFS2 file system.

The compute nodes and PVFS2 server nodes
ran a Linux 2.4.x kernel with the GCC v4.0.1 C
compiler and g95 FORTRAN compiler. The
PVFS2 clients and servers were using PVFS2
v1.5.1. We used the MPICH2 v1.0.3
implementation of the MPI-2 specification, and we
used the 4.5 release of CMAQ.

The results shown in Figure 3 are from the
experiments on the original and parallel I/O
implementations of CMAQ that used the
2km_ppm_aero3 data set with a total simulation

1 The use of hints for MPI-IO is described in

Gropp (1999).

CMAQ
PARIO
IOAPI3
netCDF

POSIX I/O

CMAQ
IOAPI3

netCDF bridge

pnetCDF
MPI-IO
PVFS2

D0

C0 C1 C2 C3

D1

D2

D3

D0

D1

D2

D3

netCDF
file

C0 C1 C2 C3

D1

D2

D3

D0

D1

D2

D3

 PF0 PF1

netCDF file

D0

2

time of 24 hours and a timestep of 1 hour. For the
original implementation, we used the NFS server
as a shared source of input files and wrote output
files to the local disk on the I/O node. We tested
the parallel I/O optimizations by writing to the
PVFS2 parallel file system. We ran both
implementations using 16 and 32 processors.

For the original implementation, 16 or 32
processors easily saturate the Fast Ethernet NIC
on a single I/O node, even with the small data
sizes that CMAQ uses. Just adding a parallel file
system does not solve the problem. A parallel file
system distributes the network load among the file
servers, but without two-phase I/O enabled by
MPI-IO, the performance is actually worse than
using a single I/O node.

An interesting point to note is what happens to
write time when the processor count doubles from
16 to 32 nodes. A single I/O node sees an
increase in write time of 49%, while pnetCDF
without the two-phase I/O optimization has an
even more dramatic increase of 64%. In contrast
to the other experiments, PnetCDF with two-phase
I/O remains flat with an increase of only 10%.

5. RELATED WORK

Our approach to parallelizing the I/O by using
the parallel netCDF library is not unique. A group
at Northwestern University and ANL made similar
modifications to an atmospheric modeling code
called FLASH (Li 2003). In their study, they
compared the performance of three I/O libraries:
serial netCDF, parallel-netCDF and HDF5 (Cheng
2000). Our work is the first known effort to
develop a truly parallel I/O interface for the CMAQ
code.

6. FUTURE WORK

400

600

800

1000

1200

1400

1600

1800

16 32
of Processes

To
ta

l S
ec

on
ds

 S
pe

nt
 W

rit
in

g

Single I/O node

Parallel I/O (2phase disabled)

Parallel I/O (2phase enabled)

Research into CMAQ I/O and parallel file

systems continues. There are optimizations
possible at all levels of the parallel I/O software
stack (Fig. 2). In particular, there are many
potential optimizations for the MPI-IO library that
warrant exploration.

CMAQ is an interesting tool for parallel file
system developers, because it has small writes
and interesting I/O patterns. We plan to create a
CMAQ I/O kernel to study the behavior of the
parallel I/O software stack. The I/O kernel will
simulate the I/O patterns of the CMAQ code, but
either skip or emulate the computation phase.

Fig. 3. Without the benefits of two-phase, total
write time increases significantly as the number
of processes increases.

7. ACKNOWLEDGEMENTS

This work was supported by the High

Performance Computing Consulting Project with
the Environmental Protection Agency.

We thank Jeffrey Young from the National
Oceanic and Atmospheric Administration for
providing feedback, guidance, history and insight
to the CMAQ code.

8. REFERENCES

Cheng, A. and Michael Folk, 2000: HDF5:

High performance science data solution for the
new millennium. Proceedings of SC2000: High
Performance Networking and Computing, Dallas,
TX, ACM Press and IEEE Computer Society
Press.

Gropp, W., E. Lusk, and R. Thakur, 1999:
Using MPI-2: Advanced Features of the Message-
Passing Interface, MIT Press.

Latham, R., N. Miller, R. Ross, and P. Carns,
2004: A Next-Generation Parallel File System for
Linux Clusters. LinuxWorld Magazine, Volume 2,
Issue 1.

Li, J., W. Liao, A. Choudhary, R. Ross, R.
Thakur, W. Gropp, R. Latham, A. Siegel, B.
Gallagher, and M. Zingale, 2003: Parallel netCDF:
A high-performance scientific I/O interface.
Proceedings of SC2003: High Performance
Networking and Computing, Phoenix, AZ, IEEE
Computer Society Press.

Thakur, R., W. Gropp, and E. Lusk, 1999:
Data sieving and collective I/O in ROMIO.
Proceedings of the Seventh Symposium on the
Frontiers of Massively Parallel Computation, IEEE
Computer Society Press, 182-189.

3

http://mitpress.mit.edu/book-home.tcl?isbn=0262571331
http://mitpress.mit.edu/book-home.tcl?isbn=0262571331

