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1 INTRODUCTION

CMAQ is considered primarily as a computer-based
tool for scientific problem exploration and decision-
making, and is widely used for regulatory, policy and
research purposes. Therefore, it is important to un-
derstand how well CMAQ model output represents
reality and how this relates to the model resolution.
High resolution CMAQ model output might provide
a better representation of pollutant concentrations
in atmosphere, but in order to run CMAQ at high
resolution one has to run CMAQ at low resolution
first to establish initial and boundary conditions for
the high resolution run. Since one routinely then has
CMAQ model output at different spatial resolutions,
for example, 36 km, 12 km and 4 km, it would be
valuable not only to evaluate the accuracy of CMAQ
model output at each resolution, but also compare
accuracy across resolutions. It is also intuitive to ask
how the CMAQ model output differs at different res-
olutions and what is gained from higher resolution
CMAQ model output. To answer these questions,
we carried out a series of statistical analyses, which
include the calculation of some model performance
measures and analysis of variance. These statisti-
cal analyses are very simple to implement but the
results are insightful, providing a summary descrip-
tion of the statistical characteristics of the difference
between observations and CMAQ model output at
different spatial resolutions.

∗Corresponding author: Li Chen, the Center for Integrat-
ing Statistical and Environmental Science (CISES), the Uni-
versity of Chicago, 5734 S. Ellis Ave. Rm 459, Chicago, IL
60637; email: lichen@uchicago.edu.

In this paper, we present two case studies of hourly
ozone concentration in parts per billion (ppb), one
in the Chicago area (Illinois) and the other in the
Atlanta area (Georgia). The results show that the
high resolution model output may not have a smaller
fractional bias or root normalized mean squared er-
ror values than the low resolution model output,
but that aggregated high resolution model output
does yield a better prediction on average in terms of
these performance measures. The analysis of vari-
ance shows that CMAQ is good at modeling diurnal
effect, but poor at capturing spatial variations and
space-time interactions.

2 STATISTICAL METHODS

2.1 Fractional Bias and Root Nor-

malized Mean Squared Error

Bias and mean squared error are two basic perfor-
mance measures, but when they are compared across
locations, they might be misleading, since the obser-
vation level might be quite different at each location.
Here we use fractional bias (FB) and root normal-
ized mean squared error (RNMSE) instead, which
are commonly used in the environmental modeling
literature to characterize the accuracy of model out-
put (Canepa and Irwin 2005).

Write Xijk for the observed ozone at location i hour
k on day j. Similarly, Mijk is the model output from
some version of the CMAQ model at location i hour
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k on day j. FB and RNMSE are defined as

FBi =
M i.. − Xi..

(M i.. + Xi..)/2
,

RNMSEi =

√

1

Ni

∑

j,k(Mijk − Xijk)2

M i..Xi..

,

where M i.. = 1

Ni

∑

j,k Mijk, Xi.. = 1

Ni

∑

j,k Xijk,
and Ni is the total number of non-missing observa-
tions at location i. The missing observations and the
corresponding model output are not included in this
step. The FB measures how large the difference be-
tween observations and model output is relative to
the average magnitude of the observed values. Thus,
if the biases at two different locations are the same
but the mean values are very different, the FB at
the location with higher mean value is smaller than
the other. FB ranges between -2 and +2. For a
perfect model FB = 0, while if FB > 0 (< 0) the
model output on average overestimates (underesti-
mates) the observed concentration values. The RN-
MSE is normalized in a similar fashion. The smaller
RNMSE is, the better model output agrees with ob-
servations. These normalizations make the values of
FB and RNMSE more comparable across monitor-
ing sites.

2.2 Analysis of Variation

By comparing observations with model output di-
rectly via calculating performance measures, we learn
the on average performance of CMAQ model out-
put. But in fact, CMAQ model output provides us
more information. From a statistical point of view,
we would like to know the sources of the disagree-
ment between CMAQ model output and observa-
tions. Therefore, we propose decomposing the total
variation into space time components to better un-
derstand the source of variability. For CMAQ model
output there are no missing values, and, in the obser-
vations, less than 2% of the data are missing. At this
stage, we replaced the missing values using the pro-
cedure described in Appendix A. When the fraction
of missing data is higher, the approach to handling
missing values will be more critical.

Let Z be a general notation for the quantity of in-
terest. We decompose Zijk as,

Zijk = µ + αi + βj + γk

+(αβ)ij + (αγ)ik + (βγ)jk + rijk, (1)

for which every term sums to 0 when summed over
any index, so that, for example,

∑

i(αβ)ij = 0 for

all j and
∑

j(αβ)ij = 0 for all i. This model has
the form of the linear model in a standard analy-
sis of variance (ANOVA) for a three factor model
with usual (sum to 0) constraints, but these terms
here are only viewed as numbers, not unknown pa-
rameters. We use this decomposition as a tool for
summarizing how well different versions of CMAQ
can capture various aspects of the space-time varia-
tion in ozone and not as a basis for formal statistical
inference. In model (1), αi represents the site effect
at location i; βj is the j-th day effect and γk is the
hourly effect (diurnal pattern). (αβ)ij , (αγ)ij and
(βγ)jk are interaction terms: (αβ)ij is for the effect
at site i on day j, (αγ)ik is for the effect at site i hour
k, and (βγ)jk is for the effect on day j at hour k.
The variation due to each component can be calcu-
lated directly from the data. In this study, we group
overall mean and γk as the diurnal effect, since this
is the dominant source of variation in the data.

We do this analysis of variance for the differences be-
tween CMAQ model output and observations, and
compare to the corresponding decomposition for the
observations. If CMAQ is able to capture some vari-
ation, we would expect to see smaller number in
the decomposition of differences than in the obser-
vations.

3 TWO CASE STUDIES

3.1 Study One: Chicago Area

3.1.1 Data

The first case study covers the Chicago metro area.
We run two sets of nested 36 km, 12 km and 4 km
resolution CMAQ (version 4.3) with different inputs
for the planetary boundary layer (PBL) variable,
which effects meteorological fields. The PBL val-
ues for the first nested CMAQ run are substantially
lower than those for the second nested CMAQ run.
Therefore, the first run is referred as the low PBL
run and the second run as the high PBL run. Both
sets of CMAQ model output are available for the
time period from June 24th to August 1st in 1996.
This time period covers the whole month of July,
in which the highest ozone concentrations would be
expected. The spatial domain covered by all three
resolutions is northeastern Illinois (Figure 1). The
geographical features of this region are very diverse,
including rural and urban areas, as well as part of
Lake Michigan, which has a significant impact on
the meteorological fields. We define the area cov-
ered by one 36 km grid cell, which covers the city of
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Chicago, as the Urban Region, and everywhere else
in the spatial domain as the Rural Region. Observa-
tional data are available at 24 sites within the same
spatial domain over this time period. The monitor-
ing sites are numbered 1 to 24 from west to east and
8 monitors are located in the Urban Region.
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Figure 1: The spatial domain for the Chicago area
study, where the number indexes the monitoring site.
The red is for the site in Urban Region and the black is
for the site in Rural Region. The 36 km gird cells are
drawn by the grey dash lines.

The observed data are averages over small spatial
regions and can be treated as point measurements,
but CMAQ model output at best represents aver-
ages over each grid cell, so they have much larger
spatial support than the observations. One might
then hope that the high resolution CMAQ model
output will have better agreement with observations,
at least in part because the differences in spatial sup-
port are less severe. High resolution CMAQ does
produce small scale spatial variations, but, unfortu-
nately, they do not match well those in the observa-
tions. Then we aggregate the high resolution CMAQ
model output to obtain a new version of low reso-
lution CMAQ model output. For example, each 36
km gird cell is matched up with 9×9 4 km grid cells.
We then take the spatial average of the 4 km CMAQ
model output at these 9 × 9 grid cells at each time
as a new version of 36 km CMAQ model output and
this new version model output is at the same location
as the original 36 km CMAQ model output. We refer
to this new version of model output as aggregated
CMAQ model output. In order to compare CMAQ

model output with observations, we interpolate the
CMAQ model output to the locations of monitor-
ing sites. Shao, Stein, and Ching (2005) compared
the behavior of naive interpolation using the nearest
available grid cell and bilinear interpolation. They
found that bilinear interpolation is generally quite a
bit better than naive interpolation. They also found
that the more computationally intensive thin plate
spline performs no better than bilinear interpolation.
Therefore we use bilinear interpolation to interpolate
the CMAQ model output. So at each monitoring
site, there are observations X, interpolated original
CMAQ model output M36, M12 and M4 at 36 km,
12 km and 4 km resolution, and interpolated aggre-
gated CMAQ model output A4 and A12 at 36 km
resolution based on 4 km and 12 km resolution.

3.1.2 FB and RNMSE comparison

To summarize the result, the overall FB and RN-
MSE values, which are the averages across sites within
a region, are calculated for the combination of region
and PBL level: the Rural Region with low PBL level
(RL), the Rural Region with high PBL level (RH),
the Urban Region with low PBL level (UL) and the
Urban Region with high PBL level (UH).

For the FB values among M36, M12 and M4 in Ta-
ble 1, M4 has the smallest absolute FB only for RH.
For the Rural Region, the FB values of aggregated
model output, from both nested CMAQ runs, are
worse than the original model outputs. But for the
Urban Region, aggregation helps to reduce the ab-
solute value of FB, and among all the model output,
A4 is the best. For the Urban Region, the high reso-
lution model output produces some small scale spa-
tial variation, but the fact that aggregation reduces
the FB suggests that the modeled small-scale spatial
fluctuations do not match the actual fluctuation.

Table 1. Fractional bias for the Chicago area study.

M36 M12 A12 M4 A4

RL 0.031 0.007 0.086 -0.050 0.072
RH 0.202 0.197 0.248 0.135 0.226
UL -0.265 -0.399 -0.089 -0.544 -0.080
UH -0.265 -0.135 0.106 -0.244 0.099

The overall RNMSE values in Table 2 show that for
each run M4 is not the best for any combination of
region and PBL level among M36, M12 and M4. But
the aggregated model output has smaller RNMSE
than both the unaggregated high resolution model
output and the low resolution model output, and
A4 is the best among all the model output, although
A12 is only slightly worse.
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Table 2. Root normalized mean squared error for

the Chicago area study.

M36 M12 A12 M4 A4

RL 0.531 0.560 0.509 0.580 0.502
RH 0.523 0.532 0.509 0.530 0.496
UL 0.886 0.930 0.690 1.091 0.681
UH 0.905 0.734 0.618 0.814 0.606

The high resolution model output may not consis-
tently have a smaller FB or RNMSE value than the
low resolution model output, so if one stopped the
analysis at this point, one might conclude that there
is little point in carrying out high resolution runs,
at least if the goal is to match observed ozone lev-
els. However, the aggregated model output based on
the high resolution model output does have notice-
ably better prediction on average in terms of FB or
RNMSE than either low resolution runs or unaggre-
gated high resolution runs.

3.1.3 ANOVA

The analysis of variance is performed for the Ru-
ral Region and the Urban Region separately. There
are 16 sites in the Rural Region and 8 sites in the
Urban Region, so we divide the variation of each
effect by the number of sites to make them compa-
rable. If model output captures what happens in
the observations, the variation of the effects for dif-
ferences between CMAQ model output and observa-
tions would be small. For each effect, we would hope
to see smaller variation for the differences between
observations and model output than the variation
for observations.

The analysis of variance (ANOVA) is given by Figure
2. The observed variations in the Urban Region are
generally larger than the ones in the Rural Region,
especially for the site effect and the interactions be-
tween site and hour and between day and hour. It
also shows that CMAQ does a better job capturing
the space time variation in the Rural Region than in
the Urban Region.

For the hourly effect, for both PBL levels and both
regions, all versions of CMAQ model output cap-
ture this diurnal effect reasonably well. For the Ru-
ral Region, the high resolution model output does
better than the low resolution model output and ag-
gregation does not help to capture more hourly vari-
ation. On the contrary, for the Urban Region, aggre-
gation does help to capture more diurnal variation.
For the day to day variation, all versions of CMAQ
model output capture some of this large scale tem-
poral variation. Aggregation from high resolution
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Figure 2: ANOVA for the Chicago area study (×103).
In each plot, the observed variations are listed in the
title. The variations for the differences are plotted using
the following symbols: gray open circle for RL, gray dot
for RH, black open circle for UL and black dot for UH.

to low resolution improves agreement a little bit for
this daily effect. Both day to day variation and the
diurnal pattern are well modeled by CMAQ. Aggre-
gation helps to capture both hourly and daily vari-
ations, particularly for the Urban Region. For the
interaction between daily and hourly effect, none of
the versions of CMAQ model output capture this
short scale temporal variation, except for the Rural
Region low PBL run.

For the site effect in the Rural Region, all versions of
CMAQ model output from both runs capture some
of the site variation and, not surprisingly, the high
resolution model output does better than the low
resolution model output. In the Urban Region, both
12 km and 4 km resolution model output captures
a small fraction of the site effect, but aggregating
makes the agreement worse. For the site and day in-
teraction, none of the model runs are able to predict
this effect well. Aggregation helps, but the agree-
ment is still poor. For site and hour interaction,
neither of the CMAQ runs capture this term. All
model output predicts site related effects poorly.

For the residuals based on differences between ob-
servations and original model output, the sum of
squared residuals per site increases as the spatial
resolution of CMAQ goes from 36 km to 4 km, as
shown in Table 3. But aggregation helps to reduce
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this quantity.

Table 3. Sum of squared residuals per site for

the Chicago area study (×103).

M36 M12 A12 M4 A4 X
RL 44.6 54.5 42.8 60.6 42.6 34.9
RH 48.9 62.7 45.6 69.6 45.7
UL 33.5 40.0 33.0 46.8 33.0 30.9
UH 35.7 44.6 34.5 54.5 34.8

3.2 Study Two: Atlanta Area

3.2.1 Data

The second case study considers a region around At-
lanta. A set of 32 km, 8 km, and 2 km resolution
CMAQ model output, which were run by the US
Environmental Protection Agency (EPA), is avail-
able for the time period from August 1st to August
24th in 1999. The spatial domain covered by all
three resolutions is the Atlanta metro area (Figure
3). Observations from Clean Air Status and Trends
Network (CASTNET) and Aerometric Information
Retrieval System (AIRS) within the same spatial do-
main over this time period are available at the 12
sites labeled 1 to 12 from west to east. Similar to
the first study, we aggregate 8 km and 2 km reso-
lution model output to 32 km resolution. Then bi-
linear interpolation is applied to all available model
output. Therefore, we have observations X, inter-
polated model output, M32, M8 and M2, and inter-
polated aggregated model output, A8 and A2.
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Figure 3: The spatial domain for the Atlanta area study,
where the number indexes the monitoring site.

3.2.2 FB and RNMSE comparison

The overall FB and RNMSE are listed in Table 4.
The value of FB from high resolution is better than
the value from low resolution, though the FB from
M2 is only slightly better than M8. Aggregation
does not improve FB. For RNMSE, M2 has the small-
est value among M32, M8 and M2. Moreover, RN-
MSEs from A8 and A2 are better than M8 and M2

correspondingly, and A2 has the best RNMSE. Over-
all, the 2 km model output agrees the observations
best among 32 km, 8 km and 2 km model output in
terms of both FB and RNMSE. Aggregation helps
to reduce RNMSE, but not FB.

Table 4. Fractional bias and root normalized mean

squared error for the Atlanta data study.

M32 M8 A8 M2 A2

FB 0.377 0.298 0.302 0.291 0.302
RNMSE 0.512 0.517 0.483 0.490 0.459

3.2.3 ANOVA

The ANOVA decomposition is performed on the ob-
servations and the differences between model output
and observations; results are listed in Table 5. All
the versions of CMAQ model output capture the di-
urnal effect reasonably well, which is the dominant
effect. Aggregation does not help to capture more
hourly variation. For the daily effect, M2 is better
than M32 and M8, and A2 has similar capacity as
M2 to model day to day variation. For the day-hour
interaction, no model output captures much. For
site related effects, all of the model outputs perform
poorly. Even though aggregation helps to reduce the
variation of site related effects, most of them are still
bigger than the variations in the observations. The
sum of squared residuals decreases as the resolution
changes from 2 km to 32 km. Aggregation helps
to reduce the sum of squared residuals compared to
their base, but A2 still gives slightly larger values
than M32.

Table 5. ANOVA for the Atlanta area study (×103).

Effect M32 M8 A8 M2 A2 X
hour 3421 2159 2352 2013 2305 19719

day 357 525 494 269 250 407

site 271 463 275 389 249 198

hour×day 494 489 456 451 416 593

site×hour 349 335 204 269 175 305

site×day 228 339 239 311 216 188

Residuals 682 1135 730 1144 702 606

5



4 DISCUSSION

There are many ways to compare model output to
observations. Overall performance measures, such
as FB and RNMSE, provide the evaluation of the
on average performance. But they do not help us
to understand whether the spatial-temporal varia-
tion given by the model matches with the pattern in
the observations. Jun and Stein (2004) propose to
compare the space-time correlation structures of ob-
servations and numerical model output in evaluating
numerical models. This empirical method is attrac-
tive and easy to implement in principle. But when
observations are only available from a few monitor-
ing sites, the results might be hard to interpret. The
analysis of variance that we present in this paper is
easy to implement, but also provides information of
spatial-temporal aspects of the variation that can
not be obtained from overall summary statistics.

For the Atlanta area study, all 12 monitoring sites
are located close to major highways. They act sim-
ilarly to the Rural sites in the Chicago area study.
The results of Atlanta area study have the similar
pattern as shown in the Rural Region in Chicago
area study.

High resolution CMAQ model output does not nec-
essarily predict hourly ozone concentration better
than low resolution CMAQ model output in terms of
RNMSE. But the aggregated model output does help
to improve the on average performance, especially
for the Urban Region in the Chicago area study.
Aggregation is a simple smoothing technique, which
takes the spatial average as the corresponding value.
In this paper we aggregated from high resolution to
low resolution, for example, from 4 km to 36 km.
We also did an experiment to obtain new versions
of high resolution model output by aggregation. For
example, the new model output at each 4 km grid
cell is produced by aggregating from 4 km to 36 km
centered at this cell. The results based on this new
version model output are similar to the results pre-
sented in the previous Section. More sophisticated
smoothing method, e.g., kernel based methods, can
be employed to smooth the model output, but in
this study we stick to the simple averaging method
because it makes comparisons across model resolu-
tions more intuitive.

The analysis of variance for both studies shows that
CMAQ has great capability to model both the diur-
nal pattern and day to day variation, which are the
dominant components in the total variation. Aggre-

gation helps to capture more diurnal variation in the
Urban Region in Chicago area study. Moreover, it
helps in capturing the daily effect for both studies.
The interaction between daily and hourly effect is
a relatively important component, but none of the
models describe this source of variation well. This
might be caused by the poor meteorological/emission
inputs. For site-related effects, all the model runs
perform poorly. Even CMAQ runs at high spatial
resolution are not able to capture well such small
scale spatial features as shown in observations. Both
studies suggest that different versions of CMAQ model
output have different capacities in capturing differ-
ent aspects of space-time variations. Thus, given
that low resolution output is a prerequisite for ob-
taining high resolution model output, it makes sense
to use the output at all resolutions when comparing
model output to observations or when attempting to
combine model output and observations.

APPENDIX A

Suppose the observed hourly ozone concentration
Xijk at location i, day j, and hour k is missing.

This missing value is replaced with X̂ijk, which is
defined as

X̂ijk = X̄...+(X̄i..−X̄...)+(X̄.j.−X̄...)+(X̄..k−X̄...).

The missing value is replaced with the sum of over-
all mean, ith site effect, jth day effect and kth hour
effect.
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