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1. INTRODUCTION

The National Air Quality Forecast System is
being developed by the National Oceanic and
Atmospheric Administration (NOAA) and the U.S.
Environmental Protection Agency (EPA) to provide
air quality forecasts for photochemical ozone
(smog), fine particulate matter (PM, ) and other
pollutants. NOAA is currently using the
Community Multiscale Air Quality (CMAQ) model
coupled with the Eta meteorological model to
predict photochemical ozone concentrations, and
plans to extend the model to include PM, . in the
near future. CMAQ requires hourly emissions
estimates of pollutants from each stack (as well as
from nonpoint and mobile sources). These hourly
estimates are generally developed using temporal
allocation factors, which reflect measured or
inferred variations in emissions due to seasonal,
weekly, and diurnal variations. However, these
temporal patterns are subject to considerable
uncertainty. In particular, emissions from electric
generating units (EGUSs) are believed to vary
depending on short-term demands for electricity.
For instance, increased use of air conditioning on
hot summer days is expected to cause increases
in electricity demand, and consequent increases in
EGU emissions. EGUs are an important source of
emissions of nitrogen oxides (NO,), which react
with volatile organic compounds (VOC) in the
presence of sunlight to form ozone. NO, and
sulfur dioxide (SO,) emissions from EGUs also
react to produce PM, ..
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The U.S. EPA Clean Air Markets Division has
assembled continuous emissions monitoring
systems (CEMS) data from the U.S. Department of
Energy for more than 5000 EGUs as part of EPA’s
Acid Rain and NO, Budget Programs (EPA, 2005).
These data are currently being used to provide
hourly emissions data for CMAQ model evaluation
studies, and to calculate retrospective seasonal
average emission rates for other CMAQ modeling
efforts. The purpose of the current effort is to draw
on CEMS data to relate EGU NO, emissions to
temperature and other meteorological variables.
These relationships will be used in the National Air
Quiality Forecast System to adjust for the influence
of changing meteorological conditions on daily
EGU emissions.

2. METHODS

Autoregressive time-series models were used
to relate EGU NO, emissions to meteorological
parameters and to day type (weekday and
weekend day or holiday). These models were
developed at various levels of geographic
resolution. A multi-step approach was used to
build the models, relating regional-specific
averaged daily NO, emissions to regional-specific
averaged meteorological variables.

2.1 Processing and Analysis of
Emissions Data

Preprocessed CEMS data files were obtained
from the EPA for calendar years 2002 and 2003.
The CEMS data include the measured hourly NO,
emissions, SO, emissions, and boiler heat input for
each boiler. The files are formatted for input to the
Sparse Matrix Kernel Emissions (SMOKE)
modeling system used with CMAQ); and EGU



Figure 1. North American Electric Reliability Council Regions and Subregions

(NERC).

identification codes have also been cross-
referenced to the plant identification codes used in
the EPA National Emissions Inventory (NEI).

The hourly CEMS data were aggregated to
obtain daily emissions and daily average boiler
heat inputs. We used daily instead of hourly
values to reduce the variability in the CEMS data
set that is unrelated to meteorology. In particular,
power demands are subject to diurnal variations
related to the work schedule that are independent
of diurnal temperature patterns.

EGU emissions were aggregated to
geographical regions of different sizes for
regression analysis. First, the EGUs were grouped
based on their nearest metropolitan statistical
area. The EGUs were aggregated to the state
level, and to larger geographical areas based
generally on the North American Electric Reliability
Council (NERC) regions. The NERC regions are
shown in Figure 1. Total emissions and boiler heat
inputs were calculated for each region, and
emissions were also aggregated for the major fuel
types (coal, oil, natural gas, and other) within each
region.

Figure 2 shows sample NO, emissions data
for the Commonwealth of Virginia. The figure
shows a considerable amount of variability in the

daily emissions, but also some seasonal patterns
that are typical of many other states. Emissions
are generally higher in the winter than in the
summer months, but tend to increase during the
hotter months of summer. Emissions are also
reduced in the summer of 2003 compared to
previous years because of the installation of
control devices to comply with the NO, Budget
Program. These controls are often used on a
seasonal basis. The distribution of emissions by
fuel type shown in Figure 2 is also typical. State
level NO, emissions are generally dominated by a
single fuel, in this case coal.
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Figure 2. NO, emissions data for Virginia.




2.2 Meteorological Data

Meteorological data for 2003 for this analysis
were obtained from the National Climatic Data
Center (NCDC) compilation of Integrated Surface
Hourly Observations (NCDC). From the hourly
observations, the following daily values were
calculated: maximum, minimum and average
temperature; maximum, minimum and average
dew point; maximum, minimum and average wind
speed; hours of clear sky; hours of overcast; hours
of precipitation; and cooling degree days. Days
having fewer than 20 hours of observations were
dropped. The average temperature, dew point,
and wind speed were calculated by averaging all
observations in the given day. The cooling degree
day number was calculated in accordance with
NCDC standard calculation methods, as follows:

C= |:(Tmax + Tmin%:| -18.3 (l)

where C is the cooling degree number (°C), T, . iS
the maximum temperature for the day (°C) and T,
is the minimum temperature (°C). The cooling
degree day number is zero if the daily average
temperature is below 18.3°C (65°F).

2.3 Regression Analysis

We defined a modulation factor, F,, to express
day to day variations in NO, emissions in relation
to seasonal average emissions:

Fy = Ea- E‘—‘% g @

where E, is the day-specific NO, emission rate for
EGUs in a given region (g/sec), and E,q is the
average NO, emission rate in the region (g/sec)
over the ozone season (from May through
September).

Linear regression models were used to
calculate F, as a function of meteorological
parameters and day type for the 2003 area-specific
data. A multi-step approach was used to build the
final models, and to select the final model
structure. The analysis focused on the eastern
U.S., which is currently included in the operational
version of the Eta-CMAQ forecasting system;
however, regression analyses were also carried
out for the contiguous western states.

2.3.1 Preliminary analysis

The initial regression analysis included all of
the meteorological parameters listed in the
Meteorological Data section, as well as a binary
variable differentiating weekend days and holidays
from weekdays:

Fd:a+2ﬂiPi+gd 3)

where a, B and S, are parameters calculated in the
regression model; P; are the meteorological
parameters and the binary day-type variable (1 for
a weekend day or holiday and 0 for a weekday);
and ¢ is the model error. Natural logarithms were
taken for each of the meteorological parameters.
(Cooling degree days less than 1 were also
rounded to 1.0 prior to taking the logarithm.)

Separate regression analyses were carried out
for each fuel type within each of the metropolitan
areas. Regression analyses were also carried out
for the state-level data sets and the larger NERC-
based regions.

The results of the initial regression analysis
were used to narrow the list of meteorological
variables. Sets of interrelated variables, such as
maximum temperature, minimum temperature, and
average temperature were evaluated to identify the
most important member of the set. The final set of
parameters was selected based on a conceptual
model of the expected relationships of the model
parameters to NO, emissions, the observed
correlations among the candidate model
parameters, and preliminary information on initial
model fits. The final list of regression variables
was narrowed to the following five: maximum
temperature, average dew point, average wind
speed, cooling degree day number, and day type.
It is recognized that this list still contains three
temperature parameters which are interdependent
(maximum temperature, dew point, and cooling
degree days). However, these parameters provide
different approaches for quantifying the potential
demand for air conditioning of residential and office
space. Further, the three temperature-related
parameters have different influences in different
geographical regions.

The initial regression analysis indicated that
the correlation was not improved by separating the
fuel types used in a given metropolitan area or
region. One reason for this result may be the
emissions in a given region are generally



dominated by one fuel (such as coal in the
Southeast and oil in the Northeast)

Initial model fits indicated that the conceptual
model structure worked well for some areas, but
not others. The correlation was improved by
expanding the geographic region size from the
metropolitan area level to the state level. In
general though, the larger NERC-based regions
did not produce significant improvements. An
exception was the New England states, which
were combined in the final analysis. The initial
state-by-state model runs for New England gave
explained variances (r?) ranging from 0.39 (for
Maine) to 0.69 (for Massachusetts). Combining
these states the overall r? to 0.79. The impacts on
r* were generally smaller for other power sharing
regions, and any improvements in r* were
generally outweighed by a dilution of the impact of
meteorological parameters as a result of increased
region size.

Issues in the initial model fits included
incorrect signs on the model parameters and
autocorrelated model errors. Incorrect signs
indicate the model is not consistent with scientific
understanding. For the purpose of forecasting
future emissions, a scientifically valid model was
considered an important model selection criterion.
The most severe issue was the violation of the
normality and independence assumptions of the
model errors.

2.3.2 Final analysis

As a result of the findings of the preliminary
analysis, fuel types were combined in the final
regression analysis. In addition, the final analysis
focused on state level NO, emissions, with some
exceptions. The six New England states were
grouped together into two small regions — northern
and southern New England. In addition, the
District of Columbia was lumped together with
Maryland, and the Upper Peninsula of Michigan
was included with Wisconsin.

To correct for serial correlation of the model
errors found in the initial analysis, an
autoregressive error model was used. The model
goodness-of-fit was evaluated, and the model
residuals were tested for normality and
independence (i.e., the standard assumptions for
the distribution of the model errors).

The conceptual model for the final regression
analysis took the following form:

Fo=a+ ,Biln(TmaX)+ ,len(Dpan)

@
+ BIn(W,, )+ BIn(C) + ADt+ &,

where a and £, through S, are parameters
calculated in the regression model; Dp,,, is the
average dew point (K); W, is the average wind
speed (km/hour); Dt is the binary day-type variable
(defined above), and g, is an error term for the day
(the difference between the model prediction and
the input data).

The autoregressive error model to correct for
serial correlation was as follows:

&g = —P&y T Vy 5)

where ¢, is the lag 1 autoregressive error model
parameter estimated from the data, and V; is the
nonserial error component.

Testing of the resulting model errors indicated
that the assumptions of normality and
independence of the model errors were
consistently met. In the eastern U.S., regression
results were reviewed in detail. In those cases
where the model parameter signs were not
consistent with the conceptual model, the
parameter was set to zero (i.e., the predictor
variable was dropped from the model).
Examination of the model fit statistic in these cases
(r*) showed no decline in the goodness of model
fit, and many times resulted in a small increase in
the value of r2. Model forecasts quickly converge
to the mean prediction (after a few time steps).

3. RESULTS AND DISCUSSION

Since future values of the response variable
are unknown, the model kernel function is used for
to predict the modulation factor:

I:d =a+t ﬁlln(Tmax) + ﬂzln(Dpavg)

©)
+ AIn(W,,, )+ £,In(C) + 4Dt

It must be noted that this analysis has focused on
the eastern U.S. (east of the Mississippi River).
Results for the western U.S. have not been
reviewed as thoroughly, and are therefore subject
to greater uncertainty. Because of the complexity
of the relationship between NO, emissions and
meteorological parameters, the model is not



Table 1. Regression Analysis Results

F-factor
predictions F-factor limits
Explained 10" 90"
error per- per- Min- Max-
Area (®) centile centile imum imum
Alabama 0.72 -0.08 0.07 -0.33 0.20
Arizona 0.83 -0.12 0.09 -0.27 0.18
Arkansas 0.72 -0.24 0.16 -0.71 0.43
California 0.94 -0.72 0.65 -0.90 1.34
Colorado 0.80 -0.11 0.11 -0.25 0.19
Delaware 0.77 -0.50 0.46 -0.84 1.24
Florida 0.74 -0.09 0.08 -0.29 0.23
Georgia 0.83 -0.19 0.16 -0.54 0.61
Idaho 0.67 -0.80 094 -1.00 3.68
Illinois 0.93 -0.32 0.28 -0.70 0.67
Indiana 0.83 -0.14 0.13 -042 0.29
lowa 0.86 -0.18 0.14 -0.37 0.34
Kansas 0.74 -0.20 0.21 -0.56 0.44
Kentucky 0.75 -0.17 0.17 -0.49 0.43
Louisiana 0.73 -0.14 0.13 -0.44 0.39
Maryland and 0.87 -0.44 0.39 -0.80 0.88
DC
Michigan, 0.89 -0.27 054 -0.54 0.88
lower
Minnesota 0.67 -0.10 0.08 -0.51 0.26
Mississippi 0.68 -0.15 0.16 -0.35 0.47
Missouri 0.84 -0.21 0.16 -0.46 0.40
Montana 0.54 -0.17 0.12 -0.68 0.35
Nebraska 0.84 -0.20 0.17 -0.52 0.29
Nevada 0.82 -0.29 0.15 -0.55 0.27
New England 0.79 -0.22 0.25 -0.46 1.13
New Jersey 0.85 -0.55 0.46 -0.86 1.40
New Mexico 0.78 -0.13 0.11 -0.51 0.18
New York 0.82 -0.30 0.36 -0.54 0.75
North Carolina  0.86 -0.27 0.19 -0.66 0.45
North Dakota 0.84 -0.17 0.16 -0.39 0.28
Ohio 0.75 -0.14 0.10 -0.34 0.27
Oklahoma 0.79 -0.16 0.16 -0.36 0.37
Oregon 0.92 -0.84 0.34 -1.00 0.73
Pennsylvania  0.86 -0.21 0.18 -0.55 0.67
South Carolina  0.70 -0.11 0.09 -0.33 0.32
South Dakota 0.81 -0.08 0.12 -1.00 0.27
Tennessee 0.84 -0.23 0.19 -0.45 0.32
Texas 0.89 -0.13 0.12 -0.28 0.36
Utah 0.61 -0.08 0.06 -0.35 0.18
Virginia 0.83 -0.23 0.20 -0.57 0.48
Washington 0.80 -0.31 0.60 -1.00 1.28
West Virginia 0.73 -0.15 0.14 -0.57 0.56
Wisconsin and  0.90 -0.20 0.20 -0.50 0.49
upper Mi
Wyoming 0.70 -0.13 0.12 -0.37 0.22

valid for extrapolation beyond the range of
conditions analyzed in the 2003 data set.
Table 1 shows the explained variance, r?, for
the regression models. The r? statistic ranges
from 0.54 in Montana to above 0.9. The r®
statistic is above 0.75 for most of the regions.
The table also shows the 10" and 90"
percentile predictions of the modulation factor,
F, which give an indication of the variations in
emission predictions for various regions.
Finally, the table shows the maximum and
minimum modulation factors which have been
established for each region based on the range
of conditions in 2003.

Figure 3 shows the estimated impact of a
10°C increase in temperature on emissions in
different regions of the continental U.S.

Figure 4 compares predicted emissions with
observed emissions for the summer of 2003 in
North Carolina. The horizontal line at the
center of the figure reflects the average daily
emission rate for the summer season. As the
figure shows, the regression model gives a
significant improvement in predicted emissions
over seasonal average emission rates. On
average, the mean error was reduced from
21% to 9%. Figure 4 also illustrates the impact
of meteorological parameters, with emissions
varying by up to 20% from the seasonal
average. However, the figure also shows that
the daily emission rate is subject to
considerable variability that is not explained by
the meteorological regression model. Other
sources of variability include day-to-day
variations in the mixture of fuels burned and the
average efficiency of control devices. In
addition, the regression model makes only a
simple distinction between weekdays and
weekends and holidays. Industrial and
residential electricity demands will vary
between Saturday and Sunday, and during the
course of the work week. In addition, power
demands will vary during the course of the
summer season as a result of vacation
schedules and product demands.

4. SUMMARY

This effort has demonstrated that NOy
emissions from EGUs can be correlated to
meteorological parameters. In addition,
regression results indicate that meteorological
parameters can have a significant impact on
NO, emissions (see Figures 3 and 4).
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Figure 3. Estimated impact of a 10°C change in
ambient temperature on daily NO, emissions
(percent increase above summer season average).

NOAA is currently testing the regression
models for NO, emissions in its ETA-CMAQ
ozone forecast model system. The regression
models can also be used for summer NO,
emissions in PM, ;. modeling. In addition,
similar methodologies can be used to develop
regression models for winter NOy emissions,
and for SO, emissions.
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Figure 4. Comparison of predicted and observed daily
NO, emissions for North Carolina in the summer of 2003,
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